首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

2.
We estimated queen mating frequency, genetic relatedness between workers and worker reproduction in the hornets Vespa analis and Vespa simillima using microsatellite DNA genotyping. The 20 V. analis colonies studied each contained a queen inseminated by a single male. Of the 15 V. simillima colonies studied, nine had a queen inseminated by a single male, four had a queen inseminated by two males, and two had a queen inseminated by three males. The estimated effective number of matings was 1.33 ± 0.74 (mean ± SD), with 75–85% of the offspring of the six multiply mated queens sired by single males. The values for genetic relatedness between the workers of V. analis and V. simillima were 0.739 ± 0.004 and 0.698 ± 0.013 (mean ± SD), respectively. We conclude that V. analis and V. simillima colonies are genetically monogynous and monandrous. When high relatedness between the workers occurs within colonies, kin selection theory predicts a potential conflict between queens and workers over male production. To determine whether males were derived from queens or workers, males from V. analis and V. simillima colonies were genotyped at four microsatellite loci and the level of ovary activation in workers was determined. None of the 787 V. analis workers and only 15 of 3520 V. simillima workers had developed ovaries. Furthermore, the genotyping identified no worker‐produced males in any colony. The presence of reproductive workers correlated positively with the number of workers within the colony. These results suggest that eusocial colonies with an annual life cycle tend to break down socially when they become large and are close to dying.  相似文献   

3.
Summary. Potential conflict between the queen and workers over the production of males is expected in stingless bees as a result of the higher relatedness of workers with their sons than with their brothers. This conflict was studied in Melipona subnitida by observing how the queen and the workers share in male production. The oviposition of individual cells was observed in two colonies with individually marked workers for a period of 51 and 40 days respectively. The gender that developed from these cells was then determined. The results revealed that most male production was concentrated in a 2–3-week period, during which laying workers were present. During these weeks, the queens produced twice as many males as all laying workers together. Outside this distinct period, the queens produced an occasional male. A reproductive worker either oviposited before the queen did, in which case she immediately proceeded to close the cell and thus prevented the queen from oviposition, or oviposited and sealed the cell after the queen had laid an egg. When cell construction and oviposition occured on several combs simultaneously, the workers preferentially laid male eggs on the newest combs. We discuss the proximate mechanism and ultimate cause of the way in which queen-worker male production occurred. In conclusion, we argue that overt behavioural conflict, occasionally displayed by reproductive workers of this species, can be of great cost to the colony.Received 27 February 2004; revised 6 September 2004; accepted 1 October 2004.  相似文献   

4.
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens.  相似文献   

5.
The North American seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima displays a dimorphism that consists of winged (alate) and wingless (intermorph) queens; both types of queens are fully reproductive. Microsatellite allele frequencies and a mitochondrial phylogeny demonstrate (1) alate and intermorph queens represent an intraspecific wing polymorphism, and (2) an absence of assortative mating and inbreeding by males. Surveys at our field site in southcentral Arizona, USA, demonstrated that only one type of queen (intermorph or dealate) occurred in each colony, including those excavated during the season in which reproductive sexuals were present. Colony structure appeared to vary by queen type as most intermorph colonies contained multiple mated queens. Alternatively, dealate queen colonies rarely contained a mated queen. Our inability to find mated dealate queens in these colonies probably resulted from difficulty in excavating the entire colony and reproductive queen, especially given that these colonies were only excavated over one day. A morphometric analysis demonstrated that intermorph queens are intermediate in size to that of workers and alate queens, but that intermorph queens retain all of the specialized anatomical features of alate queens (except for wings). Some colonies had queens that foraged and performed nest maintenance activities, and these queens sometimes accounted for a significant portion of colony foraging trips. Dissections revealed that these queens were uninseminated; some of these queens produced males in the laboratory. Received 24 October 2006; revised 1 December 2006; accepted 8 December 2006.  相似文献   

6.
Abstract In a colony headed by a single monandrous foundress, theories predict that conflicts between a queen and her workers over both sex ratio and male production should be intense. If production of males by workers is a function of colony size, this should affect sex ratios, but few studies have examined how queens and workers resolve both conflicts simultaneously. We conducted field and laboratory studies to test whether sex-ratio variation can be explained by conflict over male production between queen and workers in the primitively eusocial wasp Polistes chinensis antennalis.
Worker oviposition rate increased more rapidly with colony size than did queen oviposition. Allozyme and micro-satellite markers revealed that the mean frequency of workers' sons among male adults in queen-right colonies was 0.39 ± 0.08 SE (n = 22). Genetic relatedness among female nestmates was high (0.654–0.796), showing that colonies usually had a single, monandrous queen. The mean sex allocation ratio (male investment/male and gyne investments) of 46 queen-right colonies was 0.47 ± 0.02, and for 25 orphaned colonies was 0.86 ± 0.04. The observed sex allocation ratio was likely to be under queen control. For queen-right colonies, the larger colonies invested more in males and produced reproductives protandrously and/or simultaneously, whereas the smaller colonies invested more in females and produced reproductives protogynously. Instead of positive relationships between colony size and worker oviposition rate, the frequency of workers' sons within queen-right colonies did not increase with colony size. These results suggest that queens control colony investment, even though they allow worker oviposition in queen-right colonies. Eggs laid by workers may be policed by the queen and/or fellow workers. Worker oviposition did not influence the outcome of sex allocation ratio as a straightforward function of colony size.  相似文献   

7.
Lone Bombus ignitus queens are known to start nests in small underground cavities. To examine the nest‐site preference of post‐hibernating queens, choice tests were carried out by providing queens with orphan colonies and empty cavities as possible nesting sites within an experimental box. Our results showed that the queens had a strong preference for takeover of an orphan colony, suggesting that nest takeover (usurpation) could occur in nature even with the presence of possible empty cavities for nesting. We compared the colony‐growth process and final production of sexuals between non‐takeover and takeover colonies. The increase in the number of egg cups was faster in the takeover colonies, suggesting that orphan broods elicit earlier oviposition by the usurping queen. Reproductives emerged earlier (significant for new queens) and in greater numbers (males) from takeover colonies than from non‐takeover colonies. Thus, post‐hibernating B. ignitus queens would search for and take over small orphan colonies to increase their fitness.  相似文献   

8.
Summary Wingless (ergatoid) males of the tramp ant Cardiocondyla minutior attack and kill their young ergatoid rivals and thus attempt to monopolize mating with female sexuals reared in the colony. Because of the different strength of local mate competition in colonies with one or several reproductive queens, we expected the production of new ergatoid males to vary with queen number. Sex ratios were mostly female-biased, but in contrast to the sympatric species C. obscurior (Cremer and Heinze, 2002) neither the percentage of ergatoid males nor of female sexuals among the first 20 sexuals produced varied considerably with queen number. As in C. obscurior, experimental colony fragmentation led to the production of winged males, whereas in unfragmented control colonies only ergatoid males eclosed.Received 3 December 2003; revised 20 February 2004; accepted 23 February 2004.  相似文献   

9.
The resolution of social conflict in colonies may accord with the interests of the most numerous party. In social insect colonies with single once-mated queens, workers are more closely related to the workers' sons than they are to the queens' sons. Therefore, they should prefer workers to produce males, against the queen's interests. Workers are capable of producing males as they arise from unfertilized eggs. We found Polistes gallicus to have colonies of single, once-mated queens, as determined by microsatellite genotyping of the workers, so worker interests predict worker male production. In colonies lacking queens, workers produced the males, but not in colonies with original queens. Thus worker interests were expressed only when the queen was gone. The high fraction of missing queens and early end to the colony cycle relative to climate so early in the season is surprising and may indicate a forceful elimination of the queen.  相似文献   

10.
Workers of the Florida harvester ant (Pogonomyrmex badius), the only North American Pogonomyrmex with a polymorphic worker caste, produce males when colonies are orphaned. In this study,we assessed the reproductive potential of workers of each caste group, minors and majors, in the presence and absence of the queen, and tested whether males produced in natural queen-right colonies are derived from workers. Worker size was positively correlated with ovariole number such that major workers had approximately double the number of ovarioles as minor workers. The number of vitellogenic oocytes, a measure of reproductive potential, was greater in major compared to minor workers and increased in both worker castes when queens were removed. Major workers have greater reproductive potential than minors although they represent a minority within the colony (~5% of workers are majors). Worker produced eggs were visible in colonies 28 – 35 days after queen removal. This time lag, from queen removal to egg production, is similar to other ants and bees. Though workers are capable of producing viable eggs, we found no evidence that they do so in queen-right colonies, suggesting that worker reproduction is controlled via some social mechanism (self restraint, policing, or inhibition). This result supports predictions of kin selection theory – that due to multiple mating by the queen workers are more related to queen-produced males than most worker-produced males and should thus favor reproduction by the queen and inhibit reproduction by other workers. Received 25 January 2007; revised 1 May 2007; accepted 21 May 2007.  相似文献   

11.

Background

Cooperation and conflict in social insects are closely linked to the genetic structure of the colony. Kin selection theory predicts conflict over the production of males between the workers and the queen and between the workers themselves, depending on intra-colonial relatedness but also on other factors like colony efficiency, sex ratios, cost of worker reproduction and worker dominance behaviour. In most bumblebee (Bombus) species the queen wins this conflict and often dominates male production. However, most studies in bumblebees have been conducted with only a few selected, mostly single mated species from temperate climate regions. Here we study the genetic colony composition of the facultative polyandrous neotropical bumblebee Bombus wilmattae, to assess the outcome of the queen-worker conflict over male production and to detect potential worker policing.

Results

A total of 120 males from five colonies were genotyped with up to nine microsatellite markers to infer their parentage. Four of the five colonies were queen right at point of time of male sampling, while one had an uncertain queen status. The workers clearly dominated production of males with an average of 84.9% +/- 14.3% of males being worker sons. In the two doubly mated colonies 62.5% and 96.7% of the male offspring originated from workers and both patrilines participated in male production. Inferring the mother genotypes from the male offspring, between four to eight workers participated in the production of males.

Conclusions

In this study we show that the workers clearly win the queen-worker conflict over male production in B. wilmattae, which sets them apart from the temperate bumblebee species studied so far. Workers clearly dominated male production in the singly as well the doubly mated colonies, with up to eight workers producing male offspring in a single colony. Moreover no monopolization of reproduction by single workers occurred.  相似文献   

12.
A single-locus two-allele model is analyzed to determine the invasion conditions for facultative biasing of colony sex allocation by hymenopteran workers in response to queen mating frequency, for a situation in which colonies have a single queen mated to one or two males. Facultative biasing of sex allocation towards increased male production in double mated colonies and increased female production in single mated colonies can both invade when the population sex allocation ratio is at the worker optimum. However, when the population sex allocation ratio is more male biased than the worker optimum, plausibly due to mixed queen and worker control, it is likely that only increased female allocation in colonies perceived by the workers to have single mated queens can invade. In this case, the frequency of mistakes made by workers in assessing queen mating frequency is an important constraint on the invasion of facultative male biasing in colonies perceived to have a double mated queen. When the population sex allocation ratio is not between the optima for workers in single and double mated colonies, plausibly due to strong queen control, then facultative biasing cannot invade. In this situation, workers in all colonies should attempt to bias allocation towards increased females. Worker male production in queenright colonies (provided not all males are worker-derived), unequal sperm use by double mated queens, and the amount of facultative biasing, do not alter these results.  相似文献   

13.
Kin selection theory has received some of its strongest support from analyses of within-colony conflicts between workers and queens in social insects. One of these conflicts involves the timing of queen production. In neotropical wasps, new queens are only produced by colonies with just one queen while males are produced by colonies with more queens, a pattern favoured by worker interests. We now show that new colonies, or swarms, have few queens and variable within-colony relatednesses which means that their production is not tied to new queen production. The queens in these swarms are seldom the mothers of the workers in the swarm. Therefore, either colonies producing swarms have very many queens, or queens joining daughter swarms are reproductive losers on the original colonies. As new colony production is not linked to queen production, it can occur at the ecologically optimum time, i.e. the rainy season. This disassociation between queen production and new colony production allows worker interests in sex ratios to prevail without hampering new colony production at the most favourable season, an uncoupling that may contribute to the ecological success of the Epiponini.  相似文献   

14.
The genetic structure of social insect colonies is predicted to affect the balance between cooperation and conflict. Stingless bees are of special interest in this respect because they are singly mated relatives of the multiply mated honeybees. Multiple mating is predicted to lead to workers policing each others' male production with the result that virtually all males are produced by the queen, and this prediction is borne out in honey bees. Single mating by the queen, as in stingless bees, causes workers to be more related to each others' sons than to the queen's sons, so they should not police each other. We used microsatellite markers to confirm single mating in eight species of stingless bees and then tested the prediction that workers would produce males. Using a likelihood method, we found some worker male production in six of the eight species, although queens produced some males in all of them. Thus the predicted contrast with honeybees is observed, but not perfectly, perhaps because workers either lack complete control or because of costs of conflict. The data are consistent with the view that there is ongoing conflict over male production. Our method of estimating worker male production appears to be more accurate than exclusion, which sometimes underestimates the proportion of males that are worker produced.  相似文献   

15.
In social insect colonies, male production may involve conflicts over the sex ratio, worker vs. queen reproduction, and each queen's contribution to the males when there are multiple queens. We examined male production in the swarm‐founding, multiple‐queened wasp, Polybioides tabidus, for which previous work suggested worker control of the sex ratios. We found that queens produced the males in accord with the collective worker preference. We also found that diploid males were produced, but only in association with haploid males. Simulations show they should have been produced in other colonies as well and their absence indicates that they were killed in some of these other colonies. The pattern of their removal indicates that P. tabidus cannot distinguish diploid from haploid males, and that haploid males would have been removed from these colonies too. This provides evidence that the workers are able to manipulate male production when collective preferences dictate.  相似文献   

16.
Pleometrosis (colony founding by multiple queens) may improve life history characteristics that are important for early colony survival. When queens unite their initial brood, the number of workers present when incipient colonies open may be higher than for single queen colonies. Further, the time until the first worker emerges may shorten. For territorial species and species that rob brood from neighbouring colonies, a faster production of more workers may improve the chance of surviving intraspecific competition. In this study, the time from the nuptial flight to the emergence of the first worker in incipient Oecophylla smaragdina Fabr. colonies founded by 1–5 queens was compared and the production of brood during the first 68 days after the nuptial flight was assessed. Compared to haplometrotic colonies, pleometrotic colonies produced 3.2 times more workers, their first worker emerged on average 4.3 days (8%) earlier and the queen’s per capita egg production almost doubled. Further, colony production was positively, correlated with the number of founding queens and time to worker emergence was negatively correlated. These results indicate that pleometrotic O. smaragdina colo-nies are competitively superior to haplometrotic colonies as they produce more workers faster and shorten the claustral phase, leading to increased queen fecundity.  相似文献   

17.
Sex-ratio conflict between queens and workers was explored in a study of colony sex ratios, relatedness, and population investment in the ant Pheidole desertorum. Colony reproductive broods consist of only females, only males, or have a sex ratio that is extremely male biased. Colonies producing females (female specialists) and colonies producing males (male specialists) occur at near equal frequency in the population. Most colonies apparently specialize in producing one reproductive sex throughout their life. Allozyme analyses show that relatedness does not differ within male-specialist and female-specialist colonies and they do not appear to differ in available resources. In the population, workers are nearly three times more closely related to females than males; however, the investment sex ratio is near equal (1.01, female/male), which is consistent with queen control. Selection should be strong on workers to increase investment in reproductive females, so why do workers in male-specialist colonies produce only (or nearly only) males? One hypothesis is that queens in male-specialist colonies prevent the occurrence of reproductive females, perhaps by producing worker-biased female eggs. An earlier simulation study of genetic evolution of sex ratios in social Hymenoptera (Pamilo 1982b) predicts that such mechanisms can result in the evolution of bimodal colony sex ratios and queen control. Results on P. desertorum are generally consistent with that study; however, information is not currently available to test some of the model's predictions and assumptions.  相似文献   

18.
Summary Proximate control of colony dynamics was studied in the primitively eusocial halictine beeLasioglossum (Dialictus) zephyrum using allozyme markers. The results indicate that workers produce on average 15% of the male brood (range=0–50%) in small laboratory colonies made up of unrelated, single-generation, uninseminated females. This proportion is not influenced by colony size, but is influenced by the relative size of the queen. Large queens are more successful in dominating their workers than are small queens, the queen being defined as the female that is the mother of most of the brood produced in the colony. Older and larger females tend to become queens. Thus, while small differences in age (up to 4 days) influence which female becomes a queen, her ability to control her workers is primarily influenced by her relative size. The proportion of reproduction that is co-opted by the queen is negatively correlated with colony reproductivity (the number of males/day/female). Colony reproductivity is also negatively correlated with the standard deviation in size among females.  相似文献   

19.
1. Ant colonies commonly have multiple egg‐laying queens (secondary polygyny). Polygyny is frequently associated with polydomy (single colonies occupy multiple nest sites) and restricted dispersal of females. The production dynamics and reproductive allocation patterns within a population comprising one polygyne, polydomous colony of the red ant Myrmica rubra were studied. 2. Queen number per nest increased with nest density and the number of adult workers increased with the number of resident queens and with nest density. This suggests that nest site limitation promotes polygyny and that workers accumulate in nest units incapable of budding. 3. Nest productivity increased with the number of adult workers and production per queen was independent of queen number. Productivity increased with nest density, suggesting local resource enhancement. This shows that productivity can be a linear function of queen numbers and that the limiting factor is not the egg‐laying capacity of queens. 4. The total and per capita production of reproductives decreased towards the periphery of the colony, suggesting that the spatial location of nest units affects sexual production. Thus nests at the periphery of the colony invested more heavily in new workers. This is consistent with earlier observations in plants and could either represent investment in future budding or increased defence. 5. The colony produced only five new queens and 2071 males, hence the sex ratio was extremely male biased.  相似文献   

20.
In colonies of primitively eusocial wasps, some dominant workers become successive queens and inherit queenship after the death of the foundress queens. Although workers in many species do not mate, workers of Polistes snelleni are capable of mating and female production. In this study, we removed foundress queens from colonies of P. snelleni to evaluate the effects of queen loss on the dominant–subordinate relationships among the remaining workers and the productivity of colonies in the species. The foundress queens were the sole egg layers in almost all of the queenright colonies. The frequency of dominance behaviour among the wasps in the queenright colonies was significantly less than in the orphan colonies. The frequency of dominance behaviour in the successive queens after queen removal was significantly more than in the foundress queens. Multiple workers had developed ovaries, including the successive queens in 66.7 % (10/15) of the orphan colonies after queen removal. The orphan colonies produced significantly more cells and eggs than the queenright colonies. Our results suggest that the reproductive potential of the successive queens in the orphan colonies is not lower than that of the foundress queens, and that the productivity of the orphan colonies is maintained rather than causing potential conflict over direct reproduction among workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号