首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bench-scale pure moving bed bioreactor-membrane bioreactor (MBBR-MBR) used for the treatment of urban wastewater was analyzed for the identification of bacterial strains with the potential capacity for calcium carbonate and struvite biomineral formation. Isolation of mineral-forming strains on calcium carbonate and struvite media revealed six major colonies with a carbonate or struvite precipitation capacity in the biofouling on the membrane surface and showed that heterotrophic bacteria with the ability to precipitate calcium carbonate and struvite constituted ~7.5% of the total platable bacteria. These belonged to the genera Lysinibacillus, Trichococcus, Comamomas and Bacillus. Pyrosequencing analysis of the microbial communities in the suspended cells and membrane biofouling showed a high degree of similarity in all the samples collected with respect to bacterial assemblage. The study of operational taxonomic units (OTUs) identified through pyrosequencing suggested that ~21% of the total bacterial community identified in the biofouling could potentially form calcium carbonate or struvite crystals in the pure MBBR-MBR system used for the treatment of urban wastewater.  相似文献   

2.
Struvite (magnesium ammonium phosphate-MgNH4PO4·6H2O), which can extensively crystallize in wastewater treatments, is a potential source of N and P as fertilizer, as well as a means of P conservation. However, little is known of microbial interactions with struvite which would result in element release. In this work, the geoactive fungus Aspergillus niger was investigated for struvite transformation on solid and in liquid media. Aspergillus niger was capable of solubilizing natural (fragments and powder) and synthetic struvite when incorporated into solid medium, with accompanying acidification of the media, and extensive precipitation of magnesium oxalate dihydrate (glushinskite, Mg(C2O4).2H2O) occurring under growing colonies. In liquid media, A. niger was able to solubilize natural and synthetic struvite releasing mobile phosphate (PO43−) and magnesium (Mg2+), the latter reacting with excreted oxalate resulting in precipitation of magnesium oxalate dihydrate which also accumulated within the mycelial pellets. Struvite was also found to influence the morphology of A. niger mycelial pellets. These findings contribute further understanding of struvite solubilization, element release and secondary oxalate formation, relevant to the biogeochemical cycling of phosphate minerals, and further directions utilizing these mechanisms in environmental biotechnologies such as element biorecovery and biofertilizer applications.  相似文献   

3.

The ability of Chromohalobacter marismortui to precipitate carbonate and phosphate minerals has been demonstrated for the first time. Mineral precipitation in both solid and liquid media at different salts concentrations and different magnesium/calcium ratios occurred whereas crystal formation was not observed in the control. The precipitated minerals were studied by X-ray diffraction, scanning electron microscopy and EDX, and were different in liquid and solid media. In liquid media aragonite, struvite, vaterite and monohydrocalcite were precipitated forming crystals and bioliths. Bioliths accreted preferentially close to organic pellicles, whereas struvite preferentially grows in microenvironments free of such pellicles. Magnesian calcite, calcian-magnesian kutnahorite, “proto-dolomite” and huntite were formed in solid media. The Mg content of the magnesian calcite and of Ca-Mg kutnahorite also varied depending on the salt concentration of the culture media. This is the first report on bacterial precipitation of Ca-Mg kutnahorite and huntite in laboratory cultures. The results of this research show the active role played by C. marismortui in mineral precipitation, and allow us to compare them with those obtained previously using other taxonomic groups of moderately halophilic bacteria.  相似文献   

4.
ABSTRACT. Intracellular crystals are conspicuous refractile "inclusion bodies" commonly found in many protozoans, but very few have been identified mineralogically. We have isolated crystals from axenically grown mass cultures of Paramecium tetraurelia , and purified them using differential centrifugation. The crystals' structure and chemistry were analyzed using x-ray powder diffraction and energy-dispersive electron microprobe techniques. The morphology was studied by means of scanning electron microscopy. The crystals were identified as the orthorhombic mineral, calcian struvite, (Mg, Ca)NH4PO4.6H2O. Struvite from P. tetraurelia exhibited a variety of crystal habits, including hemimorphic forms, epitactic overgrowths and several types of twins. A linear correlation between computed hydration number and Mg content suggests that the crystal composition may reflect the range of conditions under which struvite nucleation and growth occur. The mineral struvite also occurs in association with guano and other rich organic products, and can be biologically induced to precipitate extracellularly. Extracellular struvite has been well characterized in pathogenic calculi (kidney stones) of humans and cats, where precipitation is enhanced by bacterial urease activity that produces ammonia in the urinary tract. This is the first study demonstrating that struvite is also biologically controlled to form as an intracellular mineral. These crystals may have formed within lipid-rich, membrane-bound vesicles in Paramecium .  相似文献   

5.
Because of increased concern about surface water eutrophication from nutrient-enriched agricultural runoff, many swine producers are encouraged to decrease application rates of waste-based P. Precipitation and subsequent removal of magnesium ammonium phosphate (MgNH(4)PO(4) x 6H(2)O), commonly known as struvite, is a promising mechanism for N and P removal from anaerobic swine lagoon effluent. The objectives of this research were to (i) quantify the effects of adjusting pH and Mg:P ratio on struvite precipitation and (ii) determine the rate constant pH effect for struvite precipitation in anaerobic swine lagoon liquid. Concentrations of PO(4)-P in liquid from two anaerobic swine lagoons were determined after 24 h of equilibration for a pH range of 7.5-9.5 and Mg:P ratios between 1:1 and 1.6:1. Struvite formation reduced the PO(4)-P concentration in the effluents to as low as 2 mgl(-1). Minimum concentrations of PO(4)-P occurred between pH 8.9 and 9.25 at all Mg:P ratios. Struvite precipitation decreased PO(4)-P concentrations by 85% within 20 min at pH 9.0 for an initial Mg:P ratio of 1.2:1. The rate of PO(4)-P decrease was described by a first-order kinetic model, with rate constants of 3.7, 7.9, and 12.3 h(-1) at pH 8.4, 8.7 and 9.0 respectively. Our results indicate that induced struvite formation is a technically feasible method to remove N and P from swine lagoon liquid and it may allow swine producers to recover nutrients for off-farm sale.  相似文献   

6.
This article presents a study of struvite formation in liquid medium induced by the sulfate-reducing bacterium Acinetobacter calcoaceticus SRB4, a strain isolated from river sediment. We identified the bacterial strain A. calcoaceticus SRB4 and analyzed its micromorphology. The minerals formed were studied with an electroprobe microanalyzer, Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, thermogravimetry, differential thermogravimetry, and differential scanning calorimetry. Acinetobacter calcoaceticus SRB4 was found to induce struvite precipitation, whereas sterile control cultures did not. Many transparent stick-shaped struvite precipitates were distributed at the bottom of the conical flasks in the experimental group. Most bacteria were spherical and a large quantity of spherical struvite particles (less than 200 nm in diameter) adhered to the bacterial surface. An electron probe microanalysis showed that the precipitates contained C, O, P, Mg, and other elements. Fourier transformation infrared spectra showed that the precipitates contained crystalline water, NH4+, and PO43? groups. X-ray diffraction spectra showed that the precipitates were struvite crystals, with preferential orientation and lattice distortion. Thermogravimetry showed that the weight loss was caused by the evaporation of crystalline water at temperatures lower than 136°C and the release of ammonia from struvite at temperatures of 136–228.5°C. In this article, we discuss the possible mechanism of struvite formation and the possible role played by A. calcoaceticus SRB4. Our study extends our understanding of the phosphate biomineralization mechanism and should prove useful in recycling phosphorus in wastewater.  相似文献   

7.
The objective of this study was to investigate on the effect of mixing intensity (G) and mixing duration (t(d)) on struvite precipitation in the chemical mechanical polishing (CMP) wastewater generated from the semiconductor manufacturing process. Batch-scale experiments revealed that struvite crystallization was affected by both G and t(d). The mixing effect was to enhance the mass transfer of solute to the crystals in the process, resulting in the improvement of struvite crystallization and growth. By forming struvite, removal efficiencies of N and P increased logarithmic with the multiple values of G and t(d), i.e., Gt(d). Insufficient mixing energy with the Gt(d) value less than 10(5) caused an increase in the formation potential of unexpected precipitate unlike to pure struvite, causing a decrease in removal efficiencies of N and P in the process. At the Gt(d) value over 10(6), struvite precipitation was not restricted by fluoride, of which high level inherently contained in the CMP wastewater. The study results can be taken into consideration in the design and operation of the struvite precipitation process for both nutrient (N and P) removal and recovery.  相似文献   

8.
Carbonate and phosphate precipitation by bacteria isolated from a saline soil was studied in vitro in a liquid culture medium over 45 days. Physicochemical parameters of this medium were continuously monitored using both selective electrodes (continuous monitoring, CM) and individual measurements by other techniques on days 5, 10, 15, 20, 25, 35 and 45 (discontinuous monitoring, DM). In DM, the precipitated minerals were studied (XRD and SEM-EDX) and the saturation index of the mineral phases was analyzed (PHREEQC program). Using the CM and DM data it was possible to distinguish several temporary stages in which both the medium and the mineralogy changed: 1) 0 to 10 days: pH reaches 8.4; significant loss of Mg2+ (incorporated into the bacterial biomass) and Ca2+ (through mineral precipitation); formation of crystals, although not in sufficient quantity to be studied until day 10. 2) 10 to 25 days: pH decreases but remains above 8; appreciable loss of Mg2+ and Ca2+ due to formation of spherical carbonate bioliths with traces of phosphates occluded within these carbonates. 3) After 25 days: biomineralization slow down; pH returns to initial values and struvite is formed (idiomorphic prismatic crystals). These trends are in agreement with the findings of other workers, although with some peculiarities regarding stages and types of mineral precipitated. In some cases the struvite contained small quantities of K and Ca, possibly because these are intermediate mineral species between typic-struvite, K-struvite and Ca-struvite. The bacteria-mediated precipitation of carbonates of Ca and/or Mg and phosphates (struvite) by the bacteria from a saline soil is demonstrated. However, struvite was not found in the soils of origin of the bacteria, possibly because it is a metastable mineral in most soils.  相似文献   

9.
《Process Biochemistry》2010,45(4):563-572
In this study, the effect of the pretreatment of NH4-N by struvite precipitation on biological nitrogen removal was investigated in treating swine wastewater. Evaluation was mainly focused on nitrification which occurred in the activated sludge system after struvite precipitation. Laboratory experiments were performed at four different hydraulic retention times (HRT), i.e., 48, 32, 24 and 16 h. Results of the long-term operation of systems showed that the struvite precipitation used as the pretreatment of raw swine wastewater enhanced the nitrification performance in activated sludge system by reducing the applied loading rates of NH4-N and TCOD in all operating conditions. The reduction of the applied NH4-N loading rate kept the levels of free ammonia (FA) concentration in biological reactors low and it prevented nitrite accumulation. In addition, the struvite precipitation elicited the biological denitrification reaction and PO4-P removal by increasing the ratios of carbon-to-nitrogen and carbon-to-phosphorus of wastewater after struvite precipitation. The struvite precipitation also enhanced the biological TCOD removal performance by reducing the toxic effect of FA. Triplicate INT-dehydrogenase tests clearly showed that FA inhibited the degradation of organic matter in activated sludge system. Finally, the struvite precipitation contributed to high TCOD, T-N and PO4-P removals of 83, 90, and 97% by facilitating biological reaction at a short HRT of 16 h.  相似文献   

10.
Cementation of salt-containing soils can be achieved by salt-tolerant or halophilic calcite precipitation bacteria. Therefore, the isolation of calcite-producing bacteria in the presence of salt is the first step in the microbial cementation of saline soils. Urease producing bacteria can cause calcite nano-crystals to precipitate by producing urease in the presence of urea and calcium. The purpose of this study was to isolate urease producing halophilic bacteria in order to make calcite precipitate in saline soil. The calcite and the properties of the strains were further analyzed by X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray detector. In this study, a total of 110 halophilic strains were isolated, from which 58 isolates proved to have the ability of urease production. Four strains were identified to produce nano-calcite using urease activity in the precipitation medium. The XRD studies showed that the size of these particles was in the range of 40–60 nm. Strain H3 revealed that calcite is mostly produced in the precipitation medium containing 5% salt in comparison with other strains. This strain also produced calcite precipitates in the precipitation medium containing 15% salt. Phylogenetic analysis indicated that these isolates are about 99–100% similar to Staphylococcus saprophyticus.  相似文献   

11.
Struvite urinary calculi, which are composed of magnesium, ammonium, and phosphate, can cause complications including sepsis and renal failure. Struvite calculi were identified within the urinary bladder and renal pelvis of 2 Long-Evans rats that died within days after arrival from a commercial vendor. The remaining rats in the shipment were screened by physical examination, radiography, and ultrasonography, revealing an additional 2 animals that were clinically affected. These rats were euthanized, necropsied, and yielded similar findings to those from the first 2 rats. In addition, urine samples had an alkaline pH and contained numerous bacteria (predominantly Proteus mirabilis), leukocytes, and crystals. All calculi were composed completely of struvite. Another 7 rats in the shipment had alkaline urine with the presence of blood cells; 6 of these rats also had abundant struvite crystals, and P. mirabilis was cultured from the urine of 3 rats. Further investigation by the vendor identified 2 of 100 rats with struvite calculi from the same colony. Although no specific cause could be implicated, the fact that all the affected rats came from the same breeding area suggests a genetic or environmental triggering event; a contribution due to diet cannot be ruled out. Our findings suggest that the affected rats had metabolic disturbances coupled with bacterial infection that predisposed them to develop struvite calculi. During sudden increases of struvite urinary calculi cases in rats, urine cultures followed by appropriate surgical intervention and antibiotic therapy is warranted. Additional factors, including diet, merit attention as well.Struvite, also known as triple phosphate, is a crystalline substance composed of magnesium ammonium phosphate (MgNH4PO4• 6 H20)10 that was first identified in the 18th century. This mineral is what consolidates into urinary calculi, or stones, both in humans and animals. Other frequently encountered types of urinary stones include calcium oxalate, calcium phosphate, uric acid, and cysteine.17 Although only 2% to 3% of stones from humans are composed of struvite,43 struvite calculi are important clinically because they can lead to sepsis and renal failure.43In both humans and animals, stones in the urinary tract can obstruct the urine outflow, with subsequent extreme pain, hydronephrosis, and (possibly) rupture of the urinary bladder. In addition, disruption of kidney function can lead to metabolic imbalances, such as uremia, seizures, depression, anorexia, dehydration, even coma and death.1,8 Here we present a case study describing the spontaneous presentation of struvite urolithiasis in a recently imported cohort of rats and related significant clinical findings.  相似文献   

12.

Background and aim

Recycled sources of phosphorus (P), such as struvite extracted from wastewater, have potential to substitute for more soluble manufactured fertilisers and help reduce the long-term threat to food security from dwindling finite reserves of phosphate rock (PR). This study aimed to determine whether struvite could be a component of a sustainable P fertiliser management strategy for arable crops.

Methods

A combination of laboratory experiments, pot trials and mathematical modelling of the root system examined the P release properties of commercial fertiliser-grade struvite and patterns of P uptake from a low-P sandy soil by two different crop types, in comparison to more soluble inorganic P fertilisers (di-ammonium phosphate (DAP) and triple super phosphate (TSP)).

Results

Struvite had greatly enhanced solubility in the presence of organic acid anions; buckwheat, which exudes a high level of organic acids, was more effective at mobilising struvite P than the low level exuder, spring wheat. Struvite granules placed with the seed did not provide the same rate of P supply as placed DAP granules for early growth of spring wheat, but gave equivalent rates of P uptake, yield and apparent fertiliser recovery at harvest, even though only 26 % of struvite granules completely dissolved. Fertiliser mixes containing struvite and DAP applied to spring wheat have potential to provide both optimal early and late season P uptake and improve overall P use efficiency.

Conclusions

We conclude that the potential resource savings and potential efficiency benefits of utilising a recycled slow release fertiliser like struvite offers a more sustainable alternative to only using conventional, high solubility, PR-based fertilisers.
  相似文献   

13.
Huang H  Xu C  Zhang W 《Bioresource technology》2011,102(3):2523-2528
In this paper, removal of nutrients from piggery wastewater by struvite crystallization was conducted using a combined technology of low-cost magnesium source in struvite precipitation and recycling of the struvite pyrolysate in the process. In the present research, it was found that high concentrations of K+ and Ca2+ present in the solution significantly affected the removal of nutrients. When the struvite crystallization formed at the condition of dosing the magnesite pyrolysate at a Mg:N:P molar ratio of 2.5:1:1, and having a reaction time of 6 h, a majority of nutrients in piggery wastewater can be removed. Surface characterization analysis demonstrated that the main components of the pyrolysate of the obtained struvite were amorphous magnesium sodium phosphate (MgNaPO4) and MgO. When the struvite pyrolysate was recycled in the process at the pH range of 8.0-8.5, the precipitation effect was optimum. When the struvite pyrolysate was recycled repeatedly at pH 8.5 or without any adjustment of pH, the outcome of the removal of the nutrients in both cases was similar. With the increase in the number of recycle times, the performance of struvite precipitation progressively decreased. An economic evaluation showed that the combination of using low-cost material and recycling of struvite was feasible. Recycling struvite for three process cycles could save the chemical costs by 81% compared to the use of pure chemicals.  相似文献   

14.

We studied the influence of pH and the phosphate content of the culture medium on the precipitation of struvite by Myxococcus xanthus, a bacterium that undergoes autolysis at the end of its exponential growth phase in liquid cultures. The best results were obtained with pH values between 7.2 and 8.0 and with a phosphate concentration of 10 mM. Our studies reveal for the first time that the precipitation of struvite always begins at the onset of autolysis and that culture conditions favoring the early occurrence of autolysis also enhance struvite production.  相似文献   

15.
We studied the formation of exocellular precipitates of struvite (Mg NH4PO4.6H2O) by 96 kinds of calcite‐pro‐ducing bacterial strains isolated from soil. We also studied the influence of calcium ions on struvite precipitation. The number of strains producing struvite was 20. Only four consistently formed large amounts. These results seem to indicate that the bacterial precipitation of struvite is not a general phenomenon. The strains studied were taxonomically identified, and no relationship was found between the production of struvite and the taxonomic identity of such strains. Calcium, supplied as Ca acetate in the culture medium, appeared to inhibit the biological precipitation of struvite.  相似文献   

16.
We investigated the precipitation of carbonate and phosphate minerals by 19 species of moderately halophilic bacteria using media with variable Mg(2+)/Ca(2+) ratios. The precipitated minerals were calcite, magnesium (Mg) calcite, and struvite (MgNH(4)PO(4) x 6H(2)O) in variable proportions depending on the Mg(2+)/Ca(2+) ratio of the medium. The Mg content of the Mg-calcite decreased with increasing Ca(2+) concentration in the medium. According to the saturation indices, other minerals could also have precipitated. We observed important differences between the morphology of carbonate and phosphate, which may help us to recognize these minerals in natural systems. We studied the growth and pH curves of four bacteria in media specific for carbonate and struvite precipitation. We consider the biomineralization processes that produce carbonate and phosphate minerals, and propose a hypothesis for the lack of struvite in natural environments and ancient rocks.  相似文献   

17.
Aims: To fabricate a DNA chip containing random fragments of genomic DNA of Yersinia enterocolitica and to verify its diagnostic ability. Methods and Results: A DNA microarray chip was fabricated using randomly fragmented DNA of Y. enterocolitica. Chips were hybridized with genomic DNA extracted from other Y. enterocolitica strains, other Yersinia spp. and bacteria in different genera. Genomic DNA extracted from Y. enterocolitica showed a significantly higher hybridization rate compared with DNA of other Yersinia spp. or bacterial genera, thereby distinguishing it from other bacteria. Conclusions: A DNA chip containing randomly fragmented genomic DNA from Y. enterocolitica can detect Y. enterocolitica and clearly distinguish it from other Yersinia spp. and bacteria in different genera. Significance and Impact of the Study: A microarray chip containing randomly fragmented genomic DNA of Y. enterocolitica was fabricated without sequence information, and its diagnostic ability to identify Y. enterocolitica was verified.  相似文献   

18.
To better understand the mechanism of formation of carbonate minerals by microbes, culture experiments with Arthrobacter sp. strain MF-2 were carried out using M2 medium without carbonate ions for 50 days. A series of sterile control experiments without bacteria were run simultaneously. During the incubation, cell density, the quantity of precipitate, the extracellular polysaccharide (EPS) content, the activity of carbonic anhydrase (CA), the low molecular weight organic acid concentration, the pH, the electrical conductivity, and the Ca2+ and Mg2+ concentrations of the medium were determined. The morphologies of the precipitated carbonates were observed using scanning electron microscopy, and their mineral species were determined by X-ray diffraction. The results demonstrated that the quantity of precipitate in the biotic experiments increased gradually with the incubation time; precipitate was not obtained in the abiotic experiments. The average precipitation rate correlated positively with the cell density and the EPS content, with r = 0.64 and 0.61, respectively. This suggests that bacterial cells and EPS effected carbonate precipitation. Carbonate ion incorporation into minerals results from carbon dioxide hydration, promoted by microbial secretion of CA by bacteria. These findings contribute to the ongoing search for feasible mechanisms for the sequestration of carbon dioxide in the subsurface, in this case mediated by microorganisms.  相似文献   

19.
Precipitation of minerals was shown by 22 species of moderately halophilic bacteria in both solid and liquid artificial marine salts media at different concentration and different Mg2+-to-Ca2+ ratio. Precipitation of minerals was observed for all the bacteria used. When salt concentration increased, the quantity and the size of bioliths decreased, the time required for precipitation being increased. The precipitated minerals were calcite, magnesian calcite, aragonite, dolomite, monohydrocalcite, hydromagnesite and struvite in variable proportions, depending on the bacterial species, the salinity and the physical state of the medium; the Mg content of the magnesian calcite also varied according to the same parameters. The precipitated minerals do not correspond exactly to those which could be precipitated inorganically according to the saturation indices. Scanning electron microscopy showed that the formation of the bioliths is initiated by grouping of calcified cells and that the dominant final morphologies were spherulitic with fibrous radiated interiors. It was demonstrated that moderately halophilic bacteria play an active role in the precipitation of carbonates and we hypothesize about this process of biomineralization.  相似文献   

20.
B4 precipitation medium has been used as the preferred medium for studying mineral precipitation using bacterial strains in vitro since pioneer studies were performed by Boquet and coworkers in 1973. Using this medium, several authors have demonstrated that some environmental isolates were able to precipitate minerals, yet others did not. The main goal of the current study is to understand whether pH and buffer conditions would have a significant effect on mineral precipitation results for environmental isolates grown on B4. For this study, a total of 49 strains isolated from natural environments from Puerto Rico were grown on B4 plates, and their CaCO3 precipitation potential was investigated. Our findings revealed a strong correlation between a lack of CaCO3 precipitation and the acidification of the B4 plates by the colonies. The ability to precipitate CaCO3 could be restored by buffering the B4 medium to a pH of 8.2. Buffering capacity of the medium was proposed to be involved in CaCO3 precipitation: acid-base titrations conducted on the individual ingredients of B4 showed that yeast extract has a poor buffering capacity between pH 6.5–7.5. This pH range corresponds to the pH of B4 plates [6.87 (±0.05)] prior to the inoculation. This might explain why B4 is such a good precipitation medium: a small variation in the H+/OH? balance during microbial growth and precipitation produces rapid changes in the pH of the medium. Finally, an amorphous matrix was distributed within 90% of the examined crystals generated on B4 medium by the environmental strains. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号