首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the potential roles of telocytes in heart development,renewal,and repair.However,further research on the functions of telocytes is limited by the complicated in vivo environment.This study was designed to construct engineered heart tissue(EHT)as a three-dimensional model in vitro to better understand the role of telocytes in the architectural organization of the myocardium.EHTs were constructed by seeding neonatal cardiomyocytes in collagen/Matrigel scaffolds followed by culture under persistent static stretch.Telocytes in EHTs were identified by histology,toluidine blue staining,immunofluorescence,and transmission electron microscopy.The results from histology and toluidine blue staining demonstrated widespread putative telocytes with compact toluidine blue-stained nuclei,which were located around cardiomyocytes.Prolongations from the cell bodies showed a characteristic dichotomous branching pattern and formed networks in EHTs.Immunofluorescence revealed positive staining of telocytes for CD34 and vimentin with typical moniliform prolongations.A series of electron microscopy images further showed that typical telocytes embraced the cardiomyocytes with their long prolongations and exhibited a marked appearance of nursing cardiomyocytes during the construction of EHTs.This finding highlights the great importance of telocytes in the architectural organization of EHTs.It also suggests that EHT is an appropriate physical and pathological model system in vitro to study the roles of telocytes during heart development and regeneration.  相似文献   

2.
Recent evidence indicates that the adult heart contains sub-epicardial cardiogenic niches where cardiac stem cells and stromal supporting cells reside together. Such stromal cells include a special population, previously identified as interstitial Cajal-like cells and recently termed telocytes because of their long, slender processes (telopodes) embracing the myocardial precursors. Specific stromal cells, presumptively originated from the epicardium, have been postulated to populate the developing heart where they are thought to play a role in its morphogenesis. This study is designed to investigate the occurrence of telocytes in the developing heart and provide clues to better understand their role as supporting cells involved in the architectural organization of the myocardium during heart development. Our results showed that stromal cells with the immunophenotypical (vimentin, CD34) and ultrastructural features of telocytes were present in the mouse heart since early embryonic to adult life, as well as in primary cultures of neonatal mouse cardiac cells. These cells formed an extended network of telopodes which closely embraced the growing cardiomyocytes and appeared to contribute to the aggregation of cardiomyocyte clusters in vitro. In conclusion, the present findings strongly suggest that, during heart development, stromal cells identifiable as telocytes could play a nursing and guiding role for myocardial precursors to form the correct three-dimensional tissue pattern and contribute to compaction of the embryonic myocardial trabeculae. It is tempting to speculate that telocytes could be a novel, possible target for therapeutic strategies aimed at potentiating cardiac repair and regeneration after ischemic injury.  相似文献   

3.
The term TELOCYTES was very recently introduced, for replacing the name Interstitial Cajal‐Like Cells (ICLC). In fact, telocytes are not really Cajal‐like cells, they being different from all other interstitial cells by the presence of telopodes, which are cell‐body prolongations, very thin (under the resolving power of light microscopy), extremely long (tens up to hundreds of micrometers), with a moniliform aspect (many dilations along), and having caveolae. The presence of telocytes in epicardium and myocardium was previously documented. We present here electron microscope images showing the existence of telocytes, with telopodes, at the level of mouse endocardium. Telocytes are located in the subendothelial layer of endocardium, and their telopodes are interposed in between the endocardial endothelium and the cardiomyocytes bundles. Some telopodes penetrate from the endocardium among the cardiomyocytes and surround them, eventually. Telopodes frequently establish close spatial relationships with myocardial blood capillaries and nerve endings. Because we may consider endocardium as a ‘blood–heart barrier’, or more exactly as a ‘blood–myocardium barrier’, telocytes might have an important role in such a barrier being the dominant cell population in subendothelial layer of endocardium.  相似文献   

4.
特络细胞是一种新型间质细胞,其最显著的形态特征是具有极其细长且粗细不均而呈念珠形的细胞突起,可以和周围的同/异型细胞、血管、神经末梢等形成细胞连接。特络细胞还可释放细胞外囊泡(EVs)和其他信号分子,从而发挥其潜在的生理功能。先前的研究表明,特络细胞的功能与动物组织再生有关,因此对于低等动物特络细胞的研究有助于进一步理解其参与组织再生的机理,为人类再生医学提供参考。本文综述了近年来有关特络细胞在不同动物器官组织中的分布位置、免疫表型、超微结构特点、与周围细胞型的结构关系以及特络细胞功能的研究进展,探讨了已有研究中不同动物组织器官中特络细胞在超微结构上的差异,有助于进一步理解特络细胞的生物学特性与生理功能。  相似文献   

5.
Evidence has been given that the adult heart contains a specific population of stromal cells lying in close spatial relationship with cardiomyocytes and with cardiac stem cells in sub‐epicardial cardiogenic niches. Recently termed ‘telocytes’ because of their long cytoplasmic processes embracing the parenchymal cells, these cells have been postulated to be involved in heart morphogenesis. In our opinion, investigating the occurrence and morphology of telocytes during heart histogenesis may shed further light on this issue. Our findings show that typical telocytes are present in the mouse heart by early embryonic to adult life. These cells closely embrace the growing cardiomyocytes with their long, slender cytoplasmic processes. Hence, in the developing myocardium, telocytes may play nursing and guiding roles for myocardial precursors to form the correct three‐dimensional tissue architectural pattern, as previously suggested.  相似文献   

6.
Recently the new term 'telocytes' has been proposed for cells formerly known as interstitial Cajal-like cells. In fact, telocytes are not really Cajal-like cells, they being different from all other interstitial cells by the presence of telopodes, which are cell-body prolongations, very thin, extremely long with a moniliform aspect. The identification of these cells is based on ultrastructural criteria. The presence of telocytes in others organs was previously documented. We reported for the first time, an ultrastructural study of telocytes in the lamina propria of rat duodenum. Our findings show that typical telocytes are present in the rat duodenum. Telocytes are located in the lamina propria, immediately below mucosal crypts. Telopodes frequently establish close spatial relationships with immune cells, blood vessels and nerve endings. On the basis of their distribution and morphology, we suggest that these cells may be involved in immune response and in our opinion, it may be possible that different locations of telocytes could be associated with different roles.  相似文献   

7.
From the histological point of view, fascia lata is a dense connective tissue. Although extracellular matrix is certainly the most predominant fascia's feature, there are also several cell populations encountered within this structure. The aim of this study was to describe the existence and characteristics of fascia lata cell populations viewed through a transmission electron microscope. Special emphasis was placed on telocytes as a particular interstitial cell type, recently discovered in a wide variety of tissues and organs such as the heart, skeletal muscles, skin, gastrointestinal tract, uterus and urinary system. The conducted study confirmed the existence of a telocyte population in fascia lata samples. Those cells fulfil main morphological criteria of telocytes, namely, the presence of very long, thin cell processes (telopodes) extending from a relatively small cell body. Aside from telocytes, we have found fibroblasts, mast cells and cells with features of myofibroblastic differentiation. This is the first time it has been shown that telocytes exist in human fascia. Currently, the exact role of those cells within the fascia is unknown and definitely deserves further attention. One can speculate that fascia lata telocytes likewise telocytes in other organs may be involved in regeneration, homeostasis and intracellular signalling.  相似文献   

8.
Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com ). Functionally, TCs form a three‐dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non‐pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders.  相似文献   

9.
Recent research has revealed that cardiac telocytes (CTs) play an important role in cardiac physiopathology and the regeneration of injured myocardium. Recently, we reported that the adult Xenopus tropicalis heart can regenerate perfectly in a nearly scar‐free manner after injury via apical resection. However, whether telocytes exist in the X tropicalis heart and are affected in the regeneration of injured X tropicalis myocardium is still unknown. The present ultrastructural and immunofluorescent double staining results clearly showed that CTs exist in the X tropicalis myocardium. CTs in the X tropicalis myocardium were mainly twined around the surface of cardiomyocyte trabeculae and linked via nanocontacts between the ends of the telopodes, forming a three‐dimensional network. CTs might play a role in the regeneration of injured myocardium.  相似文献   

10.
The existence of the epicardial telocytes was previously documented by immunohistochemistry (IHC) or immunofluorescence. We have also demonstrated recently that telocytes are present in mice epicardium, within the cardiac stem‐cell niches, and, possibly, they are acting as nurse cells for the cardiomyocyte progenitors. The rationale of this study was to show that telocytes do exist in human (sub)epicardium, too. Human autopsy hearts from 10 adults and 15 foetuses were used for conventional IHC for c‐kit/CD117, CD34, vimentin, S‐100, τ, Neurokinin 1, as well as using laser confocal microscopy. Tissue samples obtained by surgical biopsies from 10 adults were studied by digital transmission electron microscopy (TEM). Double immunolabelling for c‐kit/CD34 and, for c‐kit/vimentin suggests that in human beings, epicardial telocytes share similar immunophenotype features with myocardial telocytes. The presence of the telocytes in human epicardium is shown by TEM. Epicardial telocytes, like any of the telocytes are defined by telopodes, their cell prolongations, which are very long (several tens of μm), very thin (0.1–0.2 μm, below the resolving power of light microscopy) and with moniliform configuration. The interconnected epicardial telocytes create a 3D cellular network, connected with the 3D network of myocardial telocytes. TEM documented that telocytes release shed microvesicles or exocytotic multivesicular bodies in the intercellular space. The human epicardial telocytes have similar phenotype (TEM and IHC) with telocytes located among human working cardiomyocyte. It remains to be established the role(s) of telocytes in cardiac renewing/repair/regeneration processes, and also the pathological aspects induced by their ‘functional inhibition’, or by their variation in number. We consider telocytes as a real candidate for future developments of autologous cell‐based therapy in heart diseases.  相似文献   

11.
Renal interstitial cells play an important role in the physiology and pathology of the kidneys. As a novel type of interstitial cell, telocytes (TCs) have been described in various tissues and organs, including the heart, lung, skeletal muscle, urinary tract, etc. ( www.telocytes.com ). However, it is not known if TCs are present in the kidney interstitium. We demonstrated the presence of TCs in human kidney cortex interstitium using primary cell culture, transmission electron microscopy (TEM) and in situ immunohistochemistry (IHC). Renal TCs were positive for CD34, CD117 and vimentin. They were localized in the kidney cortex interstitial compartment, partially covering the tubules and vascular walls. Morphologically, renal TCs resemble TCs described in other organs, with very long telopodes (Tps) composed of thin segments (podomers) and dilated segments (podoms). However, their possible roles (beyond intercellular signalling) as well as their specific phenotype in the kidney remain to be established.  相似文献   

12.
Telocytes (TCs) are a particular type of interstitial (stromal) cells defined by very long, moniliform telopodes. Their tissue location, between blood vessels and other cells such as cardiomyocytes (CMC) and neurons, suggests a role in intercellular signalling. In order to define a microRNA (miR) signature in cardiac TCs, we have found that miR-193 is differentially expressed between TCs and other interstitial cells. Because miR-193 regulates c-kit, our data support the previous finding that TCs express c-kit in certain circumstances. In addition, the miRs which are specific to CMC and other muscle cells (e.g. miR-133a, miR-208a) are absent in TCs. Overall the data reinforce the view that TCs are a particular type of interstitial (mesenchymal) cells.  相似文献   

13.
Telocytes are CD34‐positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role of these cells in prostatic development. This study used immunofluorescence techniques in prostate tissue and prostatic telocytes in culture to determine the relationship between telocytes and prostate morphogenesis. Furthermore, immunofluorescent labelling of telocytes was performed on prostate tissue at different stages of early postnatal development. Initially, CD34‐positive cells are found at the periphery of the developing alveoli, later in the same region, c‐kit‐positive cells and cells positive for both factors are verified and CD34‐positive cells were predominantly observed in the interalveolar stroma and the region surrounding the periductal smooth muscle. Fluorescence assays also demonstrated that telocytes secrete TGF‐β1 and are ER‐Beta (ERβ) positive. The results suggest that telocytes play a changing role during development, initially supporting the differentiation of periductal and perialveolar smooth muscle, and later, producing dense networks that separate alveoli groups and form a barrier between the interalveolar region and periurethral smooth muscle. We conclude that telocytes play a relevant role in prostate tissue organisation during postnatal development.  相似文献   

14.
We advance the hypothesis that the telocyte might be the cell of origin of both PEComas (perivascular epithelioid cell tumours) and GISTs (gastro-intestinal and extra-gastrointestinal stromal tumours). The hypothesis is supported by data from the literature reporting that both PEComas and GISTs, as well as telocytes, share the expression of several markers. These data were supplemented by original immunohistochemical tests on selected series. Specifically: (1) Melanoma markers (Melan A, MiTF) typical of PEComas are expressed by a substantial fraction of GISTs. A fraction of GISTs was also found positive for CD63, a tetraspanin protein originally described in melanomas and marking exosomes. (2) c-KIT (CD117), proper of the vast majority of GISTs, can be expressed by PEComas (as well as by telocytes). (3) Markers described in telocytes (CD34, S-100, smooth muscle actin and vascular endothelial growth factor) have been reported as positive in cases of PEComas and GISTs. Telocytes show distinctive ultrastructural features with thin, extended, telopodes and are likely involved in inter-cellular signalling via paracrine secretion as well as by shed vesicles and exosomes. These cells have been described in many locations (cavitary and non-cavitary organs) and might display potentialities of a wide spectrum of differentiation (and function). In conclusion we propose that telocytes could be the common cells of origin for both PEComas and GISTs.  相似文献   

15.
Systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of the skin and various internal organs. In SSc, telocytes, a peculiar type of stromal (interstitial) cells, display severe ultrastructural damages and are progressively lost from the clinically affected skin. The aim of the present work was to investigate the presence and distribution of telocytes in the internal organs of SSc patients. Archival paraffin‐embedded samples of gastric wall, myocardium and lung from SSc patients and controls were collected. Tissue sections were stained with Masson's trichrome to detect fibrosis. Telocytes were studied on tissue sections subjected to CD34 immunostaining. CD34/CD31 double immunofluorescence was performed to unequivocally differentiate telocytes (CD34‐positive/CD31‐negative) from vascular endothelial cells (CD34‐positive/CD31‐positive). Few telocytes entrapped in the fibrotic extracellular matrix were found in the muscularis mucosae and submucosa of SSc gastric wall. In the muscle layers and myenteric plexus, the network of telocytes was discontinuous or even completely absent around smooth muscle cells and ganglia. Telocytes were almost completely absent in fibrotic areas of SSc myocardium. In SSc fibrotic lung, few or no telocytes were observed in the thickened alveolar septa, around blood vessels and in the interstitial space surrounding terminal and respiratory bronchioles. In SSc, the loss of telocytes is not restricted to the skin, but it is a widespread process affecting multiple organs targeted by the fibrotic process. As telocytes are believed to be key players in the regulation of tissue/organ homoeostasis, our data suggest that telocyte loss might have important pathophysiological implications in SSc.  相似文献   

16.
Conventionally, cells described in the stroma of the intestinal wall are fibroblasts/fibrocytes, mast cells, plasma cells, eosinophils, macrophages and, interstitial cells of Cajal (ICCs), the latter being considered as the pacemakers of gastrointestinal rhythmicity. Recently, a new type of stromal cell called telocyte (TCs) was found in various cavitary and non-cavitary organs (www.telocytes.com). We show here direct electron microscopical evidence for the presence of TCs in the lamina propria of rat jejunum just beneath the epithelial layer of the mucosal crypts and in between the smooth muscle cells (SMCs) of muscularis mucosae. TCs are characterized by: several very long (tens to hundreds of μm) prolongations called telopodes (Tps). Tps (with caliber below the resolving power of light microscopy) display podomeres (thin segments ≤ 0.2 μm) and podoms (dilations accommodating caveolae, mitochondria, and endoplasmic reticulum). Tps present dichotomous branching and form a three dimensional network close to immune cells, SMCs or nerve bundles. TCs could play a role in intercellular signaling and control of local tissue homeostasis.  相似文献   

17.
Telocytes (TC) are interstitial cells with telopodes (Tp). These prolongations (Tp) are quite unique: very long (several tens of micrometres) and very thin (≤0.5 μm), with moniliform aspect: thin segments (podomeres) alternating with dilations (podoms). To avoid any confusion, TC were previously named interstitial Cajal-like cells (ICLC). Myocardial TC were repeatedly documented by electron microscopy, immunohistochemistry and immunofluorescence. TC form a network by their Tp, either in situ or in vitro. Cardiac TC are (completely) different of 'classic' fibroblasts or fibrocytes. We hereby present a synopsis of monitoring, by time-lapse videomicroscopy, of Tp network development in cell culture. We used a protocol that favoured interstitial cell selection from adult mouse myocardium. Videomicroscopy showed dynamic interactions of neighbour TC during the network formation. During their movement, TC leave behind distal segments (podomeres) of their Tp as guiding marks for the neighbouring cells to follow during network rearrangement.  相似文献   

18.
Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma.  相似文献   

19.
Congestive heart failure is a growing, worldwide epidemic. The major causes of heart failure are related to irreversible damage resulting from myocardial infarction (heart attack). The long-standing axiom has been that the myocardium has a limited capacity for self-repair or regeneration; and the irreversible loss of cardiac muscle and accompanying contraction and fibrosis of myocardial scar tissue, sets into play a series of events, namely, progressive ventricular remodeling of nonischemic myocardium that ultimately leads to progressive heart failure. The loss of cardiomyocyte survival cues is associated with diverse pathways for heart failure, underscoring the importance of maintaining the number of viable cardiomyocytes during heart failure progression. Currently, no medication or procedure used clinically has shown efficacy in replacing the myocardial scar with functioning contractile tissue. Therefore, given the major morbidity and mortality associated with myocardial infarction and heart failure, new approaches have been sought to address the principal pathophysiologic deficits responsible for these conditions, resulting from the loss of cardiomyocytes and viable blood vessels. Recently, the identification of stem cells from bone marrow capable of contributing to tissue regeneration has ignited significant interest in the possibility that cell therapy could be employed therapeutically for the repair of damaged myocardium. In this review, we will discuss the currently available bone marrow-derived stem progenitor cells for myocardial repair and focus on the advantages of using recently identified novel bone marrow-derived multipotent stem cells (BMSC)  相似文献   

20.
The human heart can be frequently affected by an organ-limited amyloidosis called isolated atrial amyloidosis (IAA). IAA is a frequent histopathological finding in patients with long-standing atrial fibrillation (AF). The aim of this paper was to investigate the ultrastructure of cardiomyocytes and telocytes in patients with AF and IAA. Human atrial biopsies were obtained from 37 patients undergoing cardiac surgery, 23 having AF (62%). Small fragments were harvested from the left and right atrial appendages and from the atrial sleeves of pulmonary veins and processed for electron microscopy (EM). Additional fragments were paraffin embedded for Congo-red staining. The EM examination certified that 17 patients had IAA and 82% of them had AF. EM showed that amyloid deposits, composed of characteristic 10-nm-thick filaments were strictly extra-cellular. Although, under light microscope some amyloid deposits seemed to be located within the cardiomyocyte cytoplasm, EM showed that these deposits are actually located in interstitial recesses. Moreover, EM revealed that telopodes, the long and slender processes of telocytes, usually surround the amyloid deposits limiting their spreading into the interstitium. Our results come to endorse the presumptive association of AF and IAA, and show the exclusive, extracellular localization of amyloid fibrils. The particular connection of telopodes with amyloid deposits suggests their involvement in isolated atrial amyloidosis and AF pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号