首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates.  相似文献   

2.
Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC.  相似文献   

3.
The neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e. loss of epithelial junctions and acquisition of pro-migratory properties, invades the entire embryo and differentiates into a wide diversity of terminal tissues. We have studied the implication of Rho pathways in NC development and previously showed that RhoV is required for cranial neural crest (CNC) cell specification. We show here that the non-canonical Wnt response rhoU/wrch1 gene, closely related to rhoV, is also expressed in CNC cells but at later stages. Using both gain- and loss-of-function experiments, we demonstrate that the level of RhoU expression is critical for CNC cell migration and subsequent differentiation into craniofacial cartilages. In in vitro cultures, RhoU activates pathways that cooperate with PAK1 and Rac1 in epithelial adhesion, cell spreading and directional cell migration. These data support the conclusion that RhoU is an essential regulator of CNC cell migration.  相似文献   

4.
The neural crest (NC) cells have been called the 'explorers of the embryos' because they migrate all over the embryo where they differentiate into a variety of diverse kinds of cells. In this work, we analyse the role of different molecules controlling the migration of NC cells. First, we describe the strong similarity between the process of NC migration and metastasis in tumour cells. The epithelial-mesenchymal transition process that both kinds of cells undergo is controlled by the same molecular machinery, including cadherins, connexins, Snail and Twist genes and matrix metalloproteases. Second, we analysed the molecular signals that control the patterned migration of the cephalic and trunk NC cells. Most of the factors described so far, such as Eph/ephrins, semaphorins/neuropilins and Slit/Robo, are negative signals that prohibit the migration of NC cells into target areas of the embryo. Finally, we analyse how the direction of migration is controlled by regulation of cell polarity and how the planar cell polarity or non-canonical Wnt signalling is involved in this process.  相似文献   

5.
Folate deficiency and hyperhomocysteinemia have long been associated with developmental anomalies, particularly neural tube defects and neurocristopathies—a group of diverse disorders that result from defective growth, differentiation, and migration of neural crest (NC) cells. However, the exact mechanisms by which homocysteine (Hcys) and/or folate deficiencies disrupt NC development are still poorly understood in mammals. In this work, we employed a well-defined culture system to investigate the effects of Hcys and folic acid (FA) supplementation on the morphogenetic processes of murine NC cells in vitro. We demonstrated that Hcys increases outgrowth and proliferation of cephalic NC cells and impairs their differentiation into smooth muscle cells. In addition, we showed that FA alone does not directly affect the developmental dynamics of the cephalic NC cells but is able to prevent the Hcys-induced effects. Our results, therefore, suggest that elevated Hcys levels per se cause dysmorphogenesis of the cephalic NC and might contribute to neurocristopathies in mammalian embryos.  相似文献   

6.
The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.  相似文献   

7.
In the avian embryo, cranial neural crest (NC) cells migrate extensively throughout the head region and give rise to most of the cranial skeleton (Le Lievre, C. S. (1978). J. Embryol. Exp. Morphol.47, 17–37). To investigate the skeletogenic differentiation of these cells, NC explants from the mesencephalic level of st. 9+ embryos were grown in standard organ culture on Millipore filter substrates either in isolation or in combination with those tissues with which the cells normally associate during their in vivo migration and at their final tissue sites. The results demonstrate that interaction between premigratory NC and cranial ectoderm leads to chondrogenic differentiation of NC cells. Combination of premigratory NC with presumptive site tissues led to a pattern of NC cell differentiation normally expressed after in vivo migration: Combinations of NC with retinal pigmented epithelia gave cartilage, whereas NC with maxillary ectoderm formed cartilage and membrane bone. Both resulting skeletal tissues possessed their characteristic collagen types (II in cartilage and I in bone) as shown by indirect immunofluorescence using antibodies raised against specific types of collagen. It is concluded that avian cephalic NC cells require tissue interactions if chondrogenic and osteogenic differentiation is to ensue, but that migration per se is not an absolute prerequisite for these types of differentiation. The degree of specificity underlying such interactions is discussed.  相似文献   

8.
9.
10.
11.
12.

Background

Vertebrate head development depends on a series of interactions between many cell populations of distinct embryological origins. Cranial mesenchymal tissues have a dual embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-development of cephalic NC and mesodermal cells to properly construct the head of vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have remained unclear. In this work, we addressed these issues in the avian embryo model by using quail-chick chimeras, cephalic NC cultures and immunostaining for SIX1.

Results

Our data show that, at early NC migration stages, SIX1 is expressed by mesodermal cells but excluded from the NC cells (NCC). Then, SIX1 becomes widely expressed in NCC that colonize the pre-otic mesenchyme. In contrast, in the branchial arches (BAs), SIX1 is present only in mesodermal cells that give rise to jaw muscles. At later developmental stages, the distribution of SIX1-expressing cells in mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In NC derivatives, SIX1 is notably expressed in perichondrium and chondrocytes of the nasal septum and in the sclera, although other facial cartilages such as Meckel’s were negative at the stages considered. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, not the neural and melanocytic cells express SIX1.

Conclusion

The present results point to a dynamic tissue-specific expression of SIX1 in a variety of cephalic NC- and mesoderm-derived cell types and tissues, opening the way for further analysis of Six1 function in the coordinated development of these two cellular populations during vertebrate head formation.
  相似文献   

13.
ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here, we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus. Preventing this translocation renders the protein incapable of promoting cranial neural crest (CNC) cell migration in?vivo, without affecting its proteolytic activity. In addition, the cytoplasmic domain of ADAM13 regulates the expression of multiple genes in CNC, including the protease Calpain8-a. Restoring the expression of Calpain8-a is sufficient to rescue CNC migration in the absence of the ADAM13 cytoplasmic domain. This study shows that the cytoplasmic domain of ADAM metalloproteases can perform essential functions in the nucleus of cells and may contribute substantially to the overall function of the protein.  相似文献   

14.
Vertebrates belong to the group of chordates characterized by a dorsal neural tube and an anteroposterior axis, the notochord. They are the only chordates to possess an embryonic and pluripotent structure associated with their neural primordium, the neural crest (NC). The NC is at the origin of multiple cell types and plays a major role in the construction of the head, which has been an important asset in the evolutionary success of vertebrates. We discuss here the contribution of the rostral domain of the NC to craniofacial skeletogenesis. Moreover, recent data show that cephalic NC cells regulate the activity of secondary brain organizers, hence being critical for preotic brain development, a role that had not been suspected before.  相似文献   

15.
Neural crest (NC) cells originate from the neural folds and migrate into the various embryonic regions where they differentiate into multiple cell types. A population of cephalic neural crest‐derived cells (NCDCs) penetrates back into the developing forebrain to differentiate into microvascular pericytes, but little is known about when and how cephalic NCDCs invade the telencephalon and differentiate into pericytes. Using a transgenic mouse line in which NCDCs are genetically labeled with enhanced green fluorescent protein (EGFP), we observed that NCDCs started to invade the telencephalon together with endothelial cells from embryonic day (E) 9.5. A majority of NCDCs located in the telencephalon expressed pericyte markers, that is, PDGFRβ and NG2, and differentiated into pericytes around E11.5. Surprisingly, many of the NC‐derived pericytes express p75, an undifferentiated NCDC marker at E11.5, as well as NCDCs in the mesenchyme. At the same time, a minor population of NCDCs that located separately from blood vessels in the telencephalon were NG2‐negative and some of these NCDCs also expressed p75. Proliferation and differentiation of pericytes appeared to occur in a specific mesenchymal region where blood vessels penetrated into the telencephalon. These results indicate that (i) NCDCs penetrate back into the telencephalon in parallel with angiogenesis, (ii) many NC‐derived pericytes may be still in pre‐mature states even though after differentiation into pericytes in the early developing stages, (iii) a small minority of NCDCs may retain undifferentiated states in the developing telencephalon, and (iv) a majority of NCDCs proliferate and differentiate into pericytes in the mesenchyme around the telencephalon.  相似文献   

16.
Neural crest progenitors and stem cells   总被引:1,自引:0,他引:1  
In the vertebrate embryo, multiple cell types originate from a common structure, the neural crest (NC), which forms at the dorsal tips of the neural epithelium. The NC gives rise to migratory cells that colonise a wide range of embryonic tissues and later differentiate into neurones and glial cells of the peripheral nervous system (PNS), pigment cells (melanocytes) in the skin and endocrine cells in the adrenal and thyroid glands. In the head and the neck, the NC also yields mesenchymal cells that form craniofacial cartilages, bones, dermis, adipose tissue, and vascular smooth muscle cells. The NC is therefore a model system to study cell diversification during embryogenesis and phenotype maintenance in the adult. By analysing the developmental potentials of quail NC cells in clonal cultures, we have shown that the migratory NC is a collection of heterogeneous progenitors, including various types of intermediate precursors and highly multipotent cells, some of which being endowed of self-renewal capacity. We also have identified common progenitors for mesenchymal derivatives and neural/melanocytic cells in the cephalic NC. These results are consistent with a hierarchical model of lineage segregation wherein environmental cytokines control the fate of progenitors and stem cells. One of these cytokines, the endothelin3 peptide, promotes the survival, proliferation, and self-renewal capacity of common progenitors for glial cells and melanocytes. At post-migratory stages, when they have already differentiated, NC-derived cells exhibit phenotypic plasticity. Epidermal pigment cells and Schwann cells from peripheral nerves in single-cell culture are able to reverse into multipotent NC-like progenitors endowed with self-renewal. Therefore, stem cell properties are expressed by a variety of NC progenitors and can be re-acquired by differentiated cells of NC origin, suggesting potential function for repair.  相似文献   

17.
18.
Clinical observations have demonstrated that isotretinoin (13-cis-retinoic acid; cis-RA) is a human teratogen causing primarily heart and craniofacial malformations. Isotretinoin exposure to the early postimplantation mouse embryo in culture results in specific defects in craniofacial development that may be due to an interference in the early migration of cranial neural crest (CNC) cells [Goulding and Pratt, 1986]. The present study was designed to test this hypothesis by examining the migration of these cells in whole embryo culture. Day 8 CD-1 mouse embryos were cultured for 6-48 hr in the presence or absence of cis-RA at 2 X 10(-6) to 2 X 10(-5) M. Embryos either were fixed for light microscopy using Nichols' method for localization of CNC cells or were processed for scanning and transmission electron microscopy. At the light microscopic level, CNC cells in the mid-brain region of control embryos had migrated to the region of the first and second visceral arches after 6 hr in culture. Cis-RA interfered with this migration; CNC cells in treated embryos either did not leave the neuroepithelium (NE) or were aggregated near the NE. Autoradiographic studies indicated that cis-RA did not affect the overall viability or DNA synthesis of the CNC cells. However, at the TEM level, there was a dramatic increase in the number of cellular blebs in the CNC cells. Our results demonstrate a direct effect of 13-cis-RA on the CNC cells and suggest that this effect is due to alterations in the cell surface.  相似文献   

19.
Collective cell migration is an essential process in embryo development, wound healing, inflammatory response, and cancer invasion. Although cell motions in two-dimensional (2D) monolayers have been studied previously, three-dimensional (3D) collective cell migration, which constantly occurs during embryogenesis such as the establishment of ducts and acini in vivo, remains elusive. In this paper, we develop a cell-based model incorporating cell mechanics and cell motility to address coherent cell motions in a spherical acinus-like lumen with different cell populations. It is found that the interplays between cell persistence, random fluctuation, and geometrical confinement may engender rich and novel migratory modes. In a 3D spherical lumen, two cells may undergo stripe-like or cross-circular coherent rotations, whereas multiple cells can form dynamic twisting or circulating bands, leaving sparse cells at the center or even a hollow cavity in the cell aggregate. The cell density is found to profoundly influence the collective cell migration modes. Our model can reproduce the fundamental features observed in experiments and highlight the role of mechanics in steering 3D collective cell dynamics during mammary acinar morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号