首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like Bcl-2, Mcl-1 is an important survival factor for many cancers, its expression contributing to chemoresistance and disease relapse. However, unlike other prosurvival Bcl-2-like proteins, Mcl-1 stability is acutely regulated. For example, the Bcl-2 homology 3 (BH3)-only protein Noxa, which preferentially binds to Mcl-1, also targets it for proteasomal degradation. In this paper, we describe the discovery and characterization of a novel BH3-like ligand derived from Bim, Bim(S)2A, which is highly selective for Mcl-1. Unlike Noxa, Bim(S)2A is unable to trigger Mcl-1 degradation, yet, like Noxa, Bim(S)2A promotes cell killing only when Bcl-x(L) is absent or neutralized. Furthermore, killing by endogenous Bim is not associated with Mcl-1 degradation. Thus, functional inactivation of Mcl-1 does not always require its elimination. Rather, it can be efficiently antagonized by a BH3-like ligand tightly engaging its binding groove, which is confirmed here with a structural study. Our data have important implications for the discovery of compounds that might kill cells whose survival depends on Mcl-1.  相似文献   

2.
Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models.  相似文献   

3.
The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)-only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-x(L), Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-x(L)-like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-x(L) and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.  相似文献   

4.
Previous studies have suggested that the BH3 domain of the proapoptotic Bcl-2 family member Noxa only interacts with the anti-apoptotic proteins Mcl-1 and A1 but not Bcl-2. In view of the similarity of the BH3 binding domains of these anti-apoptotic proteins as well as recent evidence that studies of isolated BH3 domains can potentially underestimate the binding between full-length Bcl-2 family members, we examined the interaction of full-length human Noxa with anti-apoptotic human Bcl-2 family members. Surface plasmon resonance using bacterially expressed proteins demonstrated that Noxa binds with mean dissociation constants (K(D)) of 3.4 nm for Mcl-1, 70 nm for Bcl-x(L), and 250 nm for wild type human Bcl-2, demonstrating selectivity but not absolute specificity of Noxa for Mcl-1. Further analysis showed that the Noxa/Bcl-2 interaction reflected binding between the Noxa BH3 domain and the Bcl-2 BH3 binding groove. Analysis of proteins expressed in vivo demonstrated that Noxa and Bcl-2 can be pulled down together from a variety of cells. Moreover, when compared with wild type Bcl-2, certain lymphoma-derived Bcl-2 mutants bound Noxa up to 20-fold more tightly in vitro, pulled down more Noxa from cells, and protected cells against killing by transfected Noxa to a greater extent. When killing by bortezomib (an agent whose cytotoxicity in Jurkat T-cell leukemia cells is dependent on Noxa) was examined, apoptosis was enhanced by the Bcl-2/Bcl-x(L) antagonist ABT-737 or by Bcl-2 down-regulation and diminished by Bcl-2 overexpression. Collectively, these observations not only establish the ability of Noxa and Bcl-2 to interact but also identify Bcl-2 overexpression as a potential mechanism of bortezomib resistance.  相似文献   

5.
The B cell lymphoma-2 (Bcl-2) homologs myeloid cell leukemia-1 (Mcl-1) and A1 are prosurvival factors that selectively bind a subset of proapoptotic Bcl homology (BH) 3-only proteins. To investigate the molecular basis of the selectivity, we determined the solution structure of the C-terminal Bcl-2-like domain of Mcl-1. This domain shares features expected of a prosurvival Bcl-2 protein, having a helical fold centered on a core hydrophobic helix and a surface-exposed hydrophobic groove for binding its cognate partners. A number of residues in the binding groove differentiate Mcl-1 from its homologs, and in contrast to other Bcl-2 homologs, Mcl-1 has a binding groove in a conformation intermediate between the open structures characterized by peptide complexes and the closed state observed in unliganded structures. Mutagenesis of potential binding site residues was used to probe the contributions of groove residues to the binding properties of Mcl-1. Although mutations in Mcl-1 had little impact on binding, a single mutation in the BH3-only ligand Bad enabled it to bind both Mcl-1 and A1 while retaining its binding to Bcl-2, Bcl-xL, and Bcl-w. Elucidating the selective action of certain BH3-only ligands is required for delineating their mode of action and will aid the search for effective BH3-mimetic drugs.  相似文献   

6.
Noxa is a member of the pro-apoptotic BH3-only group of Bcl-2 proteins that is known to bind specifically to anti-apoptotic Mcl-1 and A1, antagonizing their function. Mcl-1 has been reported to have a short half-life, and Noxa up-regulation accelerates Mcl-1 degradation by the proteasome. Unlike human Noxa, mouse Noxa has two BH3-domains, which both have affinity for Mcl-1. We here investigate two aspects of the molecular function of Noxa, namely the requirements for the two BH3-domains in mouse Noxa and the role of Noxa in Mcl-1-degradation. We found that only the C-terminal BH3-domain of mouse Noxa is active in neutralizing Mcl-1. This was the result of the targeting of Noxa to the outer mitochondrial membrane through its C-terminal alpha-helix, which allowed Mcl-1-neutralization only when the BH3-domain was immediately N-terminal of the membrane anchor. However, the N-terminal BH3-domain enhanced interaction with Mcl-1 and A1. The Noxa-dependent degradation of Mcl-1 was independent of the kinase GSK3 and the deubiquitinase Usp9x in mouse embryonic fibroblasts. These data show that Noxa is targeted to the mitochondrial membrane where it neutralises Mcl-1 via its C-terminal BH3-domain and suggest that Noxa is co-degraded with Noxa, in a way independent of ubiquitin-modifying enzymes described for Mcl-1.  相似文献   

7.
Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the α-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques—yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis—to elucidate specificity determinants for binding to Bcl-xLversus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-xL selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-xL, Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-xL-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-xL binders.  相似文献   

8.
Proteins of the Bcl-2 family are critical regulators of apoptosis, but how its BH3-only members activate the essential effectors Bax and Bak remains controversial. The indirect activation model suggests that they simply must neutralize all of the prosurvival Bcl-2 family members, whereas the direct activation model proposes that Bim and Bid must activate Bax and Bak directly. As numerous in vitro studies have not resolved this issue, we have investigated Bim''s activity in vivo by a genetic approach. Because the BH3 domain determines binding specificity for Bcl-2 relatives, we generated mice having the Bim BH3 domain replaced by that of Bad, Noxa, or Puma. The mutants bound the expected subsets of prosurvival relatives but lost interaction with Bax. Analysis of the mice showed that Bim''s proapoptotic activity is not solely caused by its ability to engage its prosurvival relatives or solely to its binding to Bax. Thus, initiation of apoptosis in vivo appears to require features of both models.  相似文献   

9.
细胞凋亡, 即细胞程序性死亡, 在多细胞生物的发育和稳态调控过程中发挥关键作用。Bcl-2家族蛋白是凋亡过程中的主要调控因子, 关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点。已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡, 并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互作用等多种反应, 从多方面对细胞的生存状态进行调控。Bcl-2家族蛋白保守存在于脊椎动物和无脊椎动物中, 其功能在进化中存在异同。文章以高等脊椎动物(哺乳动物)和低等脊椎动物(硬骨鱼类)为代表, 总结了近年来Bcl-2家族蛋白在调控宿主凋亡与自噬、DNA损伤及新陈代谢等方面取得的最新进展。该研究为深入了解鱼类和哺乳类Bcl-2家族蛋白的功能和作用机制提供了重要参考。  相似文献   

10.
The BH3-only proteins of the Bcl-2 family are known to mediate mitochondrial dysfunction during apoptosis. However, the identity of the critical BH3-only proteins and the mechanism of their action following treatment by diverse apoptotic stimuli remain to be fully resolved. We therefore used RNAi to screen the entire Bcl-2 family for their involvement in three major apoptotic pathways in HeLa cells. We found that Bcl-xL and Mcl-1 are major inhibitors of apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL), endoplasmic reticulum (ER) stress, and proteasome inhibition. Among the 10 BH3-only proteins, Bid and Noxa were found to be critically involved in TRAIL-induced apoptosis, in which Noxa participates by constitutively binding to Mcl-1. Bim and Noxa were found to be necessary for ER stress-induced apoptosis, in which Noxa assisted Bim function by sequestering Mcl-1 and binding to Bcl-xL. As a critical BH3-only protein, Noxa was strongly upregulated and became associated with both Mcl-1 and Bcl-xL during apoptosis induced by proteasome inhibition. In addition, we found that Noxa became 'Mcl-1 free' following treatment by ER stress and proteasome inhibition, but not after TRAIL treatment. These results defined the critical Bcl-2 network during apoptosis and suggested that Noxa participated in triggering mitochondrial dysfunction in multiple apoptotic pathways through distinct mechanisms.  相似文献   

11.
The BH3-only protein Noxa is a critical mediator of apoptosis and functions primarily by sequestering/inactivating the antiapoptotic Bcl-2 family protein Mcl-1. Although Noxa is a highly labile protein, recent studies suggested that it is degraded by the proteasome in a ubiquitylation-independent manner. In the present study, we investigated the mechanism of Noxa degradation and its ability to regulate the stability of Mcl-1. We found that the ubiquitylation-independent degradation of Noxa does not require a physical association with Mcl-1. A short stretch of amino acid residues in the C-terminal tail was found to mediate the proteasome-dependent degradation of Noxa. Ectopic placement of this degron was able to render other proteins unstable. Surprisingly, mutation of this sequence not only attenuated the rapid degradation of Noxa, but also stabilized endogenous Mcl-1 through the BH3-mediated direct interaction. Together, these results suggest that the C-terminal tail of Noxa regulates the stability of both Noxa and Mcl-1.  相似文献   

12.
Despite real advances made in chemoimmunotherapy, chronic lymphocytic leukemia (CLL) is still an incurable disease. New therapeutic strategies based on the restoration of the cell death program seemed relevant. Some members of the Bcl-2 family are critical players in the defective apoptotic program in CLL cells and/or targets of apoptosis inducers in vitro. The concept of BH3 mimetics has led to the characterization of small molecules mimicking proapoptotic BH3-only members of the Bcl-2 family by their ability to bind and antagonize the prosurvival members. Some putative or actual BH3 mimetics are already being tested in clinical trials with somewhat promising results. However, none of them has a high enough interaction affinity with Mcl-1, a crucial antiapoptotic factor in CLL. It has been suggested that resistance to BH3 mimetics can be overcome by using inhibitors of Mcl-1 expression. An alternative and more direct strategy is to design mimetics of the Noxa BH3 domain, which is a specific antagonistic Mcl-1 ligand. The development of such Noxa-like BH3 mimetics, capable of directly interacting with Mcl-1 and efficiently neutralizing its antiapoptotic activity, is extremely important to evaluate their impact on the clinical outcome of patients with CLL.  相似文献   

13.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

14.
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.  相似文献   

15.
How cells die in the absence of oxygen (anoxia) is not understood. Here we report that cells deficient in Bax and Bak or caspase-9 do not undergo anoxia-induced cell death. However, the caspase-9 null cells do not survive reoxygenation due to the generation of mitochondrial reactive oxygen species. The individual loss of Bim, Bid, Puma, Noxa, Bad, caspase-2, or hypoxia-inducible factor 1beta, which are potential upstream regulators of Bax or Bak, did not prevent anoxia-induced cell death. Anoxia triggered the loss of the Mcl-1 protein upstream of Bax/Bak activation. Cells containing a mitochondrial DNA cytochrome b 4-base-pair deletion ([rho(-)] cells) and cells depleted of their entire mitochondrial DNA ([rho(0)] cells) are oxidative phosphorylation incompetent and displayed loss of the Mcl-1 protein under anoxia. [rho(0)] cells, in contrast to [rho(-)] cells, did not die under anoxia. However, [rho(0)] cells did undergo cell death in the presence of the Bad BH3 peptide, an inhibitor of Bcl-X(L)/Bcl-2 proteins. These results indicate that [rho(0)] cells survive under anoxia despite the loss of Mcl-1 protein due to residual prosurvival activity of the Bcl-X(L)/Bcl-2 proteins. Collectively, these results demonstrate that anoxia-induced cell death requires the loss of Mcl-1 protein and inhibition of the electron transport chain to negate Bcl-X(L)/Bcl-2 proteins.  相似文献   

16.
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-xL bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-xL or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.  相似文献   

17.
Life in the balance: how BH3-only proteins induce apoptosis   总被引:22,自引:0,他引:22  
  相似文献   

18.
Interactions between Bcl-2 homology-3 (BH3)-only proteins and their pro-survival Bcl-2 family binding partners initiate the intrinsic apoptosis pathway. These interactions are mediated by a short helical motif, the BH3 domain, on the BH3-only protein, which inserts into a hydrophobic groove on the pro-survival molecule. To identify novel peptidic ligands that bind Mcl-1, a pro-survival protein relative of Bcl-2, both human and mouse Mcl-1 were screened against large randomized phage-displayed peptide libraries. We identified a number of 16-mer peptides with sub-micromolar affinity that were highly selective for Mcl-1, as well as being somewhat selective for the species of Mcl-1 (human or mouse) against which the library was panned. Interestingly, these sequences all strongly resembled natural BH3 domain sequences. By switching residues within the best of the human Mcl-1-binding sequences, or extending beyond the core sequence identified, we were able to alter the pro-survival protein interaction profile of this peptide such that it now bound all members tightly and was a potent killer when introduced into cells. Introduction of an amide lock constraint within this sequence also increased its helicity and binding to pro-survival proteins. These data provide new insights into the determinants of BH3 domain:pro-survival protein affinity and selectivity.  相似文献   

19.
Studies of the cell death pathway in the nematode Caenorhabditis elegans provided the first evidence of the evolutionary conservation of apoptosis signalling. Here we show that the worm Bcl-2 homology domain-3 (BH3)-only protein EGL-1 binds mammalian pro-survival proteins very poorly, but can be converted into a high-affinity ligand for Bcl-2 and Bcl-x(L) by subtle mutation of the cysteine residue at position 62 within the BH3 domain. A 100-fold increase in affinity was observed following a single atom change (cysteine to serine substitution), and a further 10-fold increase by replacement with glycine. The low affinity of wild-type EGL-1 for mammalian pro-survival proteins and its poor expression correlates with its weak killing activity in mammalian cells whereas the high-affinity C62G mutant is a very potent killer of cells lacking Mcl-1. Cell killing by the C62S mutant with intermediate affinity only occurs when this EGL-1 BH3 domain is placed in a more stable context, namely that of Bim(S), which allows higher expression, though the kinetics of cell death now vary depending on whether Mcl-1 is neutralized by Noxa or genetically deleted. These results demonstrate how levels of BH3-only proteins, target affinity and the spectrum of neutralization of pro-survival proteins all contribute to killing activity.Cell Death and Differentiation (2008) 15, 1609-1618; doi:10.1038/cdd.2008.86; published online 20 June 2008.  相似文献   

20.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号