首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have mimicked features of immune selection to make human antibodies in bacteria. Diverse libraries of immunoglobulin heavy (VH) and light (V kappa and V lambda) chain variable (V) genes were prepared from peripheral blood lymphocytes (PBLs) of unimmunized donors by polymerase chain reaction (PCR) amplification. Genes encoding single chain Fv fragments were made by randomly combining heavy and light chain V-genes using PCR, and the combinatorial library (greater than 10(7) members) cloned for display on the surface of a phage. Rare phage with "antigen-binding" activities were selected by four rounds of growth and panning with "antigen" (turkey egg-white lysozyme (TEL) or bovine serum albumin) or "hapten" (2-phenyloxazol-5-one (phOx], and the encoding heavy and light chain genes were sequenced. The V-genes were human with some nearly identical to known germ-line V-genes, while others were more heavily mutated. Soluble antibody fragments were prepared and shown to bind specifically to antigen or hapten and with good affinities, Ka (TEL) = 10(7) M-1; Ka (phOx) = 2 x 10(6) M-1. Isolation of higher-affinity fragments may require the use of larger primary libraries or the construction of secondary libraries from the binders. Nevertheless, our results suggest that a single large phage display library can be used to isolate human antibodies against any antigen, by-passing both hybridoma technology and immunization.  相似文献   

2.
Cheng M  Chan SY  Zhao Q  Chan EY  Au SW  Lee SS  Cheung WT 《PloS one》2011,6(11):e27406
Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig) variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR) step was introduced to rescue stop codon and to enhance diversity of the complementarity-determining region 3 (CDR3). The germline scFv library was initially characterized against the hapten antigen phenyloxazolone (phOx). Sequence analysis of the phOx-selective scFvs indicated that the CDRs consisted of novel as well as conserved motifs. In order to illustrate that the diversity of CDR3 was increased by the fsPCR step, a second scFv library was constructed using a single scFv clone L3G7C as a template. Despite showing similar binding characteristics towards phOx, the scFv clones that were obtained from the L3G7C-derived antibody library gave a lower non-specific binding than that of the parental L3G7C clone. To determine whether germline library represented the endogenous immune status, specific scFv clones for nucleocapsid (N) protein of SARS-associated coronavirus (SCoV) were obtained both from naïve and immunized germline scFv libraries. Both libraries yielded specific anti-N scFvs that exhibited similar binding characteristics towards recombinant N protein, except the immunized library gave a larger number of specific anti-N scFv, and clones with identical nucleotide sequences were found. In conclusion, highly diversified antibody library can be efficiently constructed using germline rearranged immunoglobulin variable genes as source of antibody repertoires and fsPCR to diversify the CDR3.  相似文献   

3.
Somatic mutation occurs at a low rate in the rearranged antibody V region genes of the hybridoma line B1-8. delta 1 which expresses an antibody with specificity for the hapten 4-hydroxy-3-nitro-5-iodo-phenylacetyl (NIP). A mutant was selected which had lost a binding site-related idiotope but retained most of its other idiotypic determinants. The mutant had concomitantly lost NIP binding and acquired specificity for dinitrophenylated bovine serum albumin. It carried a single point mutation in position 50 of the heavy chain, resulting in the replacement of an arginine by a glycine.  相似文献   

4.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

5.
Antibody phage display libraries (Griffin and Tomlinson I) displaying antibody genes and maintained and amplified in Escherichia coli were used to isolate antibodies to the hapten target microcystin LR (1000 Da) conjugated to either bovine serum albumin or keyhole limpet haemocyanin. In competition enzyme-linked immunosorbent assay, bacterially expressed antibodies selected via the Griffin library showed at least 300 times greater sensitivity than those isolated from the Tomlinson library, for free microcystin. Bacterially expressed phage antibody libraries provide a rapid and relatively easy route for the selection of monoclonal antibodies specific for even the most difficult of antigenic targets such as free haptens.  相似文献   

6.
This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.  相似文献   

7.
Camelids, camels and llamas, have a unique immune system able to produce heavy-chain only antibodies. Their VH domains (VHHs) are the smallest binding units produced by immune systems, and therefore suitable for biotechnological applications through heterologous expression. The recognition of protein antigens by these VHHs is rather well documented, while less is known about the VHH/hapten interactions. The recently reported X-ray structure of a VHH in complex with a copper-containing azo-dye settled the ability of VHH to recognize haptens by forming a cavity between the three complementarity-determining regions (CDR). Here we report the structures of a VHH (VHH A52) free or complexed with an azo-dye, RR1, without metal ion. The structure of the complex illustrates the involvement of CDR2, CDR3 and a framework residue in a lateral interaction with the hapten. Such a lateral combining site is comparable to that found in classical antibodies, although in the absence of the VL.  相似文献   

8.
《MABS-AUSTIN》2013,5(2):437-445
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

9.
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

10.
Single‐domain antibodies (sdAbs), the variable domains of camelid heavy chain‐only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti‐methotrexate, anti‐triclocarban and anti‐cortisol sdAbs revealed unexpected contributions of the non‐hypervariable “CDR4” loop, formed between β‐strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15‐acetyl‐deoxynivalenol (15‐AcDON), and to carbohydrates. We constructed and panned a phage‐displayed library in which CDR4 of the 15‐AcDON‐specific sdAb, NAT‐267, was extended and randomized. From this library, we identified one sdAb, MA‐232, bearing a 14‐residue insertion in CDR4 and showing improved binding to 15‐AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage‐displayed libraries in which the CDR4 and other regions of three hapten‐ or carbohydrate‐binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan‐binding specificities, we panned the library against four tumor‐associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten‐specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.  相似文献   

11.
This article describes the generation of the Human Combinatorial Antibody Library HuCAL GOLD. HuCAL GOLD is a synthetic human Fab library based on the HuCAL concept with all six complementarity-determining regions (CDRs) diversified according to the sequence and length variability of naturally rearranged human antibodies. The human antibody repertoire was analyzed in-depth, and individual CDR libraries were designed and generated for each CDR and each antibody family. Trinucleotide mixtures were used to synthesize the CDR libraries in order to ensure a high quality within HuCAL GOLD, and a β-lactamase selection system was employed to eliminate frame-shifted clones after successive cloning of the CDR libraries. With these methods, a large, high-quality library with more than 10 billion functional Fab fragments was achieved. By using CysDisplay, the antibody fragments are displayed on the tip of the phage via a disulfide bridge between the phage coat protein pIII and the heavy chain of the antibody fragment. Efficient elution of specific phages is possible by adding reducing agents. HuCAL GOLD was challenged with a variety of different antigens and proved to be a reliable source of high-affinity human antibodies with best affinities in the picomolar range, thus functioning as an excellent source of antibodies for research, diagnostic, and therapeutic applications. Furthermore, the data presented in this article demonstrate that CysDisplay is a robust and broadly applicable display technology even for high-throughput applications.  相似文献   

12.
The topography of the antigen-binding site as well as the number and the positioning of the antigen contact residues are strongly correlated with the size of the antigen with which the antibody interacts. On the basis of these considerations, we have designed a focused scFv repertoire biased for haptens, designated the cavity library. The hapten-specific scFv, FITC8, was used as a scaffold for library construction. FITC8, like other hapten binders, displays a characteristic cavity in its paratope into which the hapten binds. In five of the six complementarity-determining regions, diversity-carrying residues were selected rationally on the basis of a model structure of FITC8 and on known antibody structure-function relationships, resulting in variation of 11 centrally located, cavity-lining residues. L3 was allowed to carry a more complex type of diversity. In addition, length variation was introduced into H2, as longer versions of this loop have been shown to correlate with increased hapten binding. The library was screened, using phage display, against a panel of five different haptens, yielding diverse and highly specific binders to four of the antigens. Parallel selections were performed with a library having diversity spread onto a greater area, including more peripherally located residues. This resulted in the isolation of binders, which, in contrast to the clones selected from the cavity library, were not able to bind to the soluble hapten in the absence of the carrier protein. Thus, we have shown that by focusing diversity to the hotspots of interaction a library with improved hapten-binding ability can be created. The study supports the notion that it is possible to create antibody libraries that are biased for the recognition of antigens of pre-defined size.  相似文献   

13.
In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.  相似文献   

14.
Monoclonal antibodies have revolutionized the biomedical field through their ubiquitous utilization in different diagnostics and therapeutic applications. Despite this widespread use, their large size and structural complexity have limited their versatility in specific applications. The antibody variable region that is responsible for binding antigen is embodied within domains that can be rescued individually as single‐domain antibody (sdAb) fragments. Because of the unique characteristics of sdAbs, such as low molecular weight, high physicochemical stability, and the ability to bind antigens inaccessible to conventional antibodies, they represent a viable alternative to full‐length antibodies. Consequently, 149 crystal structures of sdAbs, originating from human (VH), camelids (VHH), or sharks (VNAR), were retrieved from the Protein Data Bank, and their structures were compared. The 3 types of sdAbs displayed complementarity determining regions (CDRs) with different lengths and configurations. CDR3 of the VHH and VNAR domains were dominated by pleated and extended orientations, respectively. Although VNAR showed the smallest average molecular weight and molecular surface area compared with VHH and VH antibodies. However, the solvent accessible surface area measurements of the 3 tested sdAbs types were very similar. All the antihapten VHH antibodies showed pleated CDR3, which were sufficient to create a binding pocket to accommodate haptens (methotrexate and azo dyes) in terms of shape and electrostatic potential. The sdAbs that recognized lysozyme showed more diversity in their CDR3 orientation to enable them to recognize various topographies of lysozyme. Subsequently, the three sdAb classes were different in size and surface area and have shown distinguishable ability to optimize their CDR length and orientation to recognize different antigen classes.  相似文献   

15.
16.
A testosterone binding scFv antibody was isolated from a naïve human library with a modest size of 108 clones. The crystal structure of the Fab fragment form of the 5F2 antibody clone complexed with testosterone determined at 1.5 Å resolution shows that the hapten is bound deeply in the antibody binding pocket. In addition to the interactions with framework residues only CDR‐L3 and CDR‐H3 loops interact with testosterone and the heavy chain forms the majority of the contacts with the hapten. The testosterone binding site of the 5F2 antibody with a high abundance of aromatic amino acid residues shows similarity with an in vitro affinity matured antibody having around 300 times higher affinity. The moderate affinity of the 5F2 antibody originates from the different orientation of the hapten and few light chain contacts. This is the first three‐dimensional structure of a human steroid hormone binding antibody that has been isolated from a naïve human repertoire. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Quite recently, a few antibodies against bulk material surface have been selected from a human repertoire antibody library, and they are attracting immense interest in the bottom-up integration of nanomaterials. Here, we constructed antibody fragments with binding affinity and specificity for nonbiological inorganic material surfaces by grafting material-binding peptides into loops of the complementarity determining region (CDR) of antibodies. Loops were replaced by peptides with affinity for zinc oxide and silver material surfaces. Selection of CDR loop for replacement was critical to the functionalization of the grafted fragments; the grafting of material-binding peptide into the CDR2 loop functionalized the antibody fragments with the same affinity and selectivity as the peptides used. Structural insight on the scaffold fragment used implies that material-binding peptide should be grafted onto the most exposed CDR loop on scaffold fragment. We show that the CDR-grafting technique leads to a build-up creation of the antibody with affinity for nonbiological materials.  相似文献   

18.
Previously we reported that the variable heavy chain region (VH) of a human beta2 glycoprotein I-dependent monoclonal antiphospholipid antibody (IS4) was dominant in conferring the ability to bind cardiolipin (CL). In contrast, the identity of the paired variable light chain region (VL) determined the strength of CL binding. In the present study, we examine the importance of specific arginine residues in IS4VH and paired VL in CL binding. The distribution of arginine residues in complementarity determining regions (CDRs) of VH and VL sequences was altered by site-directed mutagenesis or by CDR exchange. Ten different 2a2 germline gene-derived VL sequences were expressed with IS4VH and the VH of an anti-dsDNA antibody, B3. Six variants of IS4VH, containing different patterns of arginine residues in CDR3, were paired with B3VL and IS4VL. The ability of the 32 expressed heavy chain/light chain combinations to bind CL was determined by ELISA. Of four arginine residues in IS4VH CDR3 substituted to serines, two residues at positions 100 and 100 g had a major influence on the strength of CL binding while the two residues at positions 96 and 97 had no effect. In CDR exchange studies, VL containing B3VL CDR1 were associated with elevated CL binding, which was reduced significantly by substitution of a CDR1 arginine residue at position 27a with serine. In contrast, arginine residues in VL CDR2 or VL CDR3 did not enhance CL binding, and in one case may have contributed to inhibition of this binding. Subsets of arginine residues at specific locations in the CDRs of heavy chains and light chains of pathogenic antiphospholipid antibodies are important in determining their ability to bind CL.  相似文献   

19.
Vascular endothelial growth factor (VEGF) and its receptors have been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. We previously identified several fully human neutralizing anti-VEGF receptor 2 (or kinase inserting domain-containing receptor (KDR)) antibodies from a large antibody phage display library. These antibodies bind specifically to KDR, block VEGF/KDR interaction, and inhibit VEGF-induced proliferation of human endothelial cells and migration of KDR+ leukemia cells. Three of these antibodies, interestingly, share an identical heavy chain variable (VH) sequence. In this report, we constructed a new library comprising the single VH paired with the variable light chain (VL) repertoire obtained from the original na?ve human library. Initial in vitro selection revealed that the single VH could pair with a number of different VL while retaining its specificity for KDR. However, a consensus VH/VL pair, clone 1121, was identified after three or four rounds of selection by tailoring the stringency of the panning conditions. Clone 1121 showed a >30-fold higher binding affinity to KDR (Kd, 100 pm) because of improvement on both association and dissociation constants and blocked VEGF/KDR interaction with an IC50 of approximately 1 nm, compared with that of 3-4 nm for the parent Fab fragments. Further, clone 1121 was more potent in inhibiting VEGF-stimulated KDR phosphorylation in endothelial cells. A binding epitope mapping study on clone 1121 and one of the parent clones, 2C6, demonstrated that both antibodies interacted with the third immunoglobulin domain within the extracellular region of KDR. Several peptide phage display libraries were utilized to further examine the fine binding specificities of the two antibodies. All of the 2C6-binding peptides are cysteine-constrained, whereas clone 1121 binds to both cysteine-constrained and linear peptides. It is noteworthy that most of the 2C6-binding peptides also cross-react with clone 1121, but none of the clone 1121-specific peptides binds to 2C6, indicating that clone 1121 retained part of the original binding epitope(s) of 2C6 while gaining new binding specificity. Taken together, our observation suggests that clone 1121 may have great clinical potential in anti-angiogenesis therapy. It further underscores the efforts to identify antibodies of high affinity for enhanced biological activities.  相似文献   

20.
A semisynthetic antibody library composed of single chain Fv fragments (scFv) was constructed by replacing the heavy chain CDR3 region of a human scFv by a random sequence of eight amino acids using trinucleotide codons. After cloning into a phage display vector, an antibody library was generated with a complexity of 8 x 10(8) independent clones. The library was screened for binders to dinitrophenol, fluorescein isothiocyanate and 3-nitro-4-hydroxy-5-iodophenylacetic acid. scFv antibodies that specifically bound the antigen were obtained in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号