首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional impairment of HIV-specific CD4(+) T cells during chronic HIV infection is closely linked to viral replication and thought to be due to T cell exhaustion. Programmed death 1 (PD-1) has been linked to T cell dysfunction in chronic viral infections, and blockade of the PD-1 pathway restores HIV-specific CD4(+) and CD8(+) T cell function in HIV infection. This study extends those findings by directly examining PD-1 expression on virus-specific CD4(+) T cells. To investigate the role of PD-1 in HIV-associated CD4(+) T cell dysfunction, we measured PD-1 expression on blood and lymph node T cells from HIV-infected subjects with chronic disease. PD-1 expression was significantly higher on IFN-gamma-producing HIV-specific CD4(+) T cells compared with total or CMV-specific CD4(+) T cells in untreated HIV-infected subjects (p = 0.0001 and p < 0.0001, respectively). PD-1 expression on HIV-specific CD4(+) T cells from subjects receiving antiretroviral therapy was significantly reduced (p = 0.007), and there was a direct correlation between PD-1 expression on HIV-specific CD4(+) T cells and plasma viral load (r = 0.71; p = 0.005). PD-1 expression was significantly higher on HIV-specific T cells in the lymph node, the main site of HIV replication, compared with those in the blood (p = 0.0078). Thus, PD-1 expression on HIV-specific CD4(+) T cells is driven by persistent HIV replication, providing a potential target for enhancing the functional capacity of HIV-specific CD4(+) T cells.  相似文献   

2.
The human immunodeficiency virus (HIV)-mediated immune response may be beneficial or harmful, depending on the balance between expansion of HIV-specific T cells and the level of generalized immune activation. The current study utilizes multicolor cytokine flow cytometry to study HIV-specific T cells and T-cell activation in 179 chronically infected individuals at various stages of HIV disease, including those with low-level viremia in the absence of therapy ("controllers"), low-level drug-resistant viremia in the presence of therapy (partial controllers on antiretroviral therapy [PCAT]), and high-level viremia ("noncontrollers"). Compared to noncontrollers, controllers exhibited higher frequencies of HIV-specific interleukin-2-positive gamma interferon-positive (IL-2(+) IFN-gamma(+)) CD4(+) T cells. The presence of HIV-specific CD4(+) IL-2(+) T cells was associated with low levels of proliferating T cells within the less-differentiated T-cell subpopulations (defined by CD45RA, CCR7, CD27, and CD28). Despite prior history of progressive disease, PCAT patients exhibited many immunologic characteristics seen in controllers, including high frequencies of IL-2(+) IFN-gamma(+) CD4(+) T cells. Measures of immune activation were lower in all CD8(+) T-cell subsets in controllers and PCAT compared to noncontrollers. Thus, control of HIV replication is associated with high levels of HIV-specific IL-2(+) and IFN-gamma(+) CD4(+) T cells and low levels of T-cell activation. This immunologic state is one where the host responds to HIV by expanding but not exhausting HIV-specific T cells while maintaining a relatively quiescent immune system. Despite a history of advanced HIV disease, a subset of individuals with multidrug-resistant HIV exhibit an immunologic profile comparable to that of controllers, suggesting that functional immunity can be reconstituted with partially suppressive highly active antiretroviral therapy.  相似文献   

3.
CD8(+) T cells in HIV-infected patients are believed to contribute to the containment of the virus and the delay of disease progression. However, the frequencies of HIV-specific CD8(+) T cells, as measured by IFN-gamma secretion and tetramer binding, often do not correlate with a delay in disease progression during chronic infection. Using the Lysispot and ELISPOT assays, we measured the frequencies of cytotoxic and IFN-gamma-secreting T cells responding to overlapping peptides from Gag, Nef, Env, and Pol consensus HIV-1 clade B sequences. PBMC from the majority of HIV-infected subjects have significant frequencies of HIV-specific cells that killed targets within 5 h directly ex vivo. The relative frequencies of IFN-gamma-secreting and cytotoxic cells varied markedly between different HIV peptide pools within the same patient, and some T cells lysed targets without secreting IFN-gamma. These results indicate that measurement of IFN-gamma production alone may be insufficient to evaluate the breadth of the HIV-specific T cell response. Also, neither the CTL to IFN-gamma ratios nor the ex vivo CTL frequencies specific for different HIV proteins were consistently lower than responses specific for two other chronic viral infections, human CMV and EBV, within the same subjects. Thus ex vivo cytotoxic T cell frequencies do not provide evidence for a model of "preterminal differentiation" of HIV-specific CD8(+) T cells during chronic HIV infection. Analysis of the frequency of directly cytotoxic HIV-specific T cells may be of considerable value in the assessment of disease progression and the potential efficacy of HIV vaccines.  相似文献   

4.
HIV-specific CD8+ T cells are critical in controlling human immunodeficiency virus (HIV) replication. We present the evaluation of a gamma-interferon (IFN-gamma)-based enzyme linked immunospot (ELISPOT) assay for the quantification of HIV-specific CD8+ T cells from HIV-infected children. We studied 20 HLA-A*0201-positive HIV-infected children. The IFN-gamma production in response to stimulation with two HLA-A*0201-restricted immunodominant CD8 epitopes (SLYNTVATL [SL9] in Gag and ILKEPVHGV [IV9] in Pol) was tested using the ELISPOT assay. The results were compared to labeling with the corresponding tetramers. Among the 20 children, 18 had detectable responses against the SL9 and/or the IV9 epitope using the ELISPOT assay (medians, 351 and 134 spot-forming cells/10(6) peripheral blood mononuclear cells, respectively). Comparison of results from the tetramer and ELISPOT assays suggests that only a fraction of HIV-specific CD8+ T cells were able to produce IFN-gamma. Most importantly, we found that the frequencies of IFN-gamma-producing CD8+ T cells were positively correlated with the viral load whereas the frequencies of tetramer-binding CD8+ T cells were not. The high sensitivity of the ELISPOT assay and the fact that this functional assay provided information different from that of tetramer labeling support its use for measurement of HIV-specific CD8+ T cells. In conclusion, our results show that the ex vivo-activated IFN-gamma-producing HIV-specific CD8+ T-cell subset is dependent upon continuous antigenic stimulation.  相似文献   

5.
We examined the influence of dose and method of antigen delivery on the dynamics and durability of T-cell responses to candidate human immunodeficiency virus (HIV) vaccines. Codon-optimized sequences from the HIV gag gene were inserted into alternative DNA vaccine vectors to express the coding sequence with or without the tissue plasminogen activator leader sequence. We delivered the vaccines by intramuscular injection as plasmid DNA without adjuvant or as plasmid DNA formulated with a novel block copolymer adjuvant (CRL8623) and then monitored the ensuing T-cell responses by using a gamma interferon enzyme-linked immunospot assay. We demonstrated persistence of the cell-mediated immune (CMI) response in rhesus macaques for at least 18 months following a four-dose vaccination regimen. The plasmid vaccine, with or without CRL8623, was immunogenic in macaques; however, the form coadministered with adjuvant exhibited improved T-cell responses, with a bias toward more antigen-specific CD8(+) T cells. Finally, we examined the fine specificity of the T-cell response to the gag vaccines by testing the response of 23 vaccinated macaques to individual Gag 20-mer peptides. Collectively, the monkeys responded to 25 epitopes, and, on average, each monkey recognized a minimum of 2.7 epitopes. The results indicate that a broad and durable CMI response to HIV DNA vaccines can be induced in a relevant nonhuman primate model.  相似文献   

6.
A clear understanding of the antiviral effects of CD8(+) T cells in the context of chronic human immunodeficiency virus (HIV) infection is critical for the development of prophylactic vaccines and therapeutics designed to support T-cell-mediated immunity. However, defining the potential correlates of effective CD8(+) T-cell immunity has proven difficult; notably, comprehensive analyses have demonstrated that the size and shape of the CD8(+) T-cell response are not necessarily indicative of efficacy determined by measures of plasma viral load. Here, we conducted a detailed quantitative and qualitative analysis of CD8(+) T-cell responses to autologous virus in a cohort of six HIV-infected individuals with a history of structured interruption of antiretroviral therapy (ART) (SIT). The magnitude and breadth of the HIV-specific response did not, by themselves, explain the changes observed in plasma virus levels after the cessation of ART. Furthermore, mutational escape from targeted epitopes could not account for the differential virological outcomes in this cohort. However, the functionality of HIV-specific CD8(+) T-cell populations upon antigen encounter, determined by the simultaneous and independent measurement of five CD8(+) T-cell functions (degranulation and gamma interferon, macrophage inflammatory protein 1beta, tumor necrosis factor alpha, and interleukin-2 levels) reflected the emergent level of plasma virus, with multiple functions being elicited in those individuals with lower levels of viremia after SIT. These data show that the quality of the HIV-specific CD8(+) T-cell response, rather than the quantity, is associated with the dynamics of viral replication in the absence of ART and suggest that the effects of SIT can be assessed by measuring the functional profile of HIV-specific CD8(+) T cells.  相似文献   

7.
We have designed DNA fusion vaccines able to induce high levels of epitope-specific CD8(+) T cells, using linked CD4(+) T cell help. Such vaccines can activate effective immunity against tumor Ags. To model performance against minor histocompatibility (H) Ags important in allogeneic hemopoietic stem cell transplantation, responses against the H2D(b)-restricted Uty and Smcy male HY epitopes have been investigated. Vaccination of females induced high levels of tetramer-specific, IFN-gamma-producing CD8(+) T cells against each epitope. Vaccines incorporating a single epitope primed effector CTL able to kill male splenocytes in vitro and in vivo, and HY(Db)Uty-specific vaccination accelerated rejection of syngeneic male skin grafts. Priming against either epitope established long-term memory, expandable by injection of male cells. Expanded CD8(+) T cells remained specific for the priming HY epitope, with responses to the second suppressed. To investigate vaccine performance in a tolerized repertoire, male mice were vaccinated with the fusion constructs. Strikingly, this also generated epitope-specific IFN-gamma-producing CD8(+) T cells with cytotoxic function. However, numbers and avidity were lower than in vaccinated females, and vaccinated males failed to reject CFSE-labeled male splenocytes in vivo. Nevertheless, these findings indicate that DNA fusion vaccines can mobilize CD8(+) T cells against endogenous minor H Ags, even from a profoundly tolerized repertoire. In the transplantation setting, vaccination of donors could prime and expand specific T cells for in vivo transfer. For patients, vaccination could activate a potentially less tolerized repertoire against similar Ags that may be overexpressed by tumor cells, for focused immune attack.  相似文献   

8.
Gut-associated lymphoid tissue (GALT) is a significant but understudied lymphoid organ, harboring a majority of the body's total lymphocyte population. GALT is also an important portal of entry for human immunodeficiency virus (HIV), a major site of viral replication and CD4(+) T-cell depletion, and a frequent site of AIDS-related opportunistic infections and neoplasms. However, little is known about HIV-specific cell-mediated immune responses in GALT. Using lymphocytes isolated from rectal biopsies, we have determined the frequency and phenotype of HIV-specific CD8(+) T cells in human GALT. GALT CD8(+) T cells were predominantly CD45RO(+) and expressed CXCR4 and CCR5. In 10 clinically stable, chronically infected individuals, the frequency of HIV Gag (SL9)-specific CD8(+) T cells was increased in GALT relative to peripheral blood mononuclear cells by up to 4.6-fold, while that of cytomegalovirus (CMV)-specific CD8(+) T cells was significantly reduced (P = 0.012). Both HIV- and CMV-specific CD8(+) T cells in GALT expressed CCR5, but only HIV-specific CD8(+) T cells expressed alpha E beta 7 integrin, suggesting that mucosal priming may account for their retention in GALT. Chronically infected individuals exhibited striking depletion of GALT CD4(+) T cells expressing CXCR4, CCR5, and alpha E beta 7 integrin, but CD4(+)/CD8(+) T-cell ratios in blood and GALT were similar. The percentage of GALT CD8(+) T cells expressing alpha E beta 7 was significantly decreased in infected individuals, suggesting that HIV infection may perturb lymphocyte retention in GALT. These studies demonstrate the feasibility of using tetramers to assess HIV-specific T cells in GALT and reveal that GALT is the site of an active CD8(+) T-cell response during chronic infection.  相似文献   

9.
Primary viral infections, including primary HIV infection, trigger intense activation of the immune system, with marked expansion of CD38(+)CD8(+) T cells. Whether this expansion involves only viral-specific cells or includes a degree of bystander activation remains a matter of debate. We therefore examined the activation status of EBV-, CMV-, and influenza virus (FLU)-specific CD8(+) T cells during primary HIV infection, in comparison to HIV-specific CD8(+) T cells. The activation markers CD38 and HLA-DR were strongly expressed on HIV-specific CD8(+) T cells. Surprisingly, CD38 expression was also up-regulated on CD8(+) T cells specific for other viruses, albeit to a lesser extent. Activation marker expression returned to normal or near-normal values after 1 year of highly active antiretroviral therapy. HIV viral load correlated with CD38 expression on HIV-specific CD8(+) T cells but also on EBV-, CMV-, and FLU-specific CD8(+) T cells. In primary HIV infection, EBV-specific CD8(+) T cells also showed increased Ki67 expression and decreased Bcl-2 expression, compared with values observed in HIV-seronegative control subjects. These results show that bystander activation occurs during primary HIV infection, even though HIV-specific CD8(+) T cells express the highest level of activation. The role of this bystander activation in lymphocyte homeostasis and HIV pathogenesis remains to be determined.  相似文献   

10.
The impact of exposure to Ag on the development and maintenance of human CD4(+) memory T cells in general and HIV infection in particular is partially understood. In this study, we measured HIV-specific CD4(+) T cell proliferative responses against HIV proteins and derived peptides one year after highly active antiretroviral therapy initiation in 39 HIV-infected patients who initiated therapy at different times following infection. We show that a brief exposure to HIV of <1 month does not allow the generation of significant detectable frequencies of HIV-specific CD4(+) memory T cells. Patients having prolonged cumulative exposure to high viral load due to therapy failures also demonstrated limited HIV-specific CD4(+) T cell responses. In contrast, patients exposed to significant levels of virus for periods ranging from 3 to 18 mo showed brisk and broad HIV-specific CD4(+) T cell responses 1 year following the onset of therapy intervention. We also demonstrate that the nadir CD4(+) T cell count before therapy initiation correlated positively with the breadth and magnitude of these responses. Our findings indicate that the loss of proliferative HIV-specific CD4(+) T cell responses is associated with the systemic progression of the disease and that a brief exposure to HIV does not allow the establishment of detectable frequencies of HIV-specific memory CD4(+) T cells.  相似文献   

11.
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.  相似文献   

12.
CD4(+) T-cell help is essential for effective immune responses to viruses. In human immunodeficiency virus (HIV) infection, CD4(+) T cells specific for HIV are infected by the virus at higher frequencies than other memory CD4(+) T cells. Here, we demonstrate that HIV-specific CD4(+) T cells are barely detectable in most infected individuals and that the corresponding CD4(+) T cells exhibit an immature phenotype compared to both cytomegalovirus (CMV)-specific CD4(+) T cells and other memory CD4(+) T cells. However, in two individuals, we observed a rare and diametrically opposed pattern in which HIV-specific CD4(+) T-cell populations of large magnitude exhibited a terminally differentiated immunophenotype; these cells were not preferentially infected in vivo. Clonotypic analysis revealed that the HIV-specific CD4(+) T cells from these individuals were cross-reactive with CMV. Thus, preferential infection can be circumvented in the presence of cross-reactive CD4(+) T cells driven to maturity by coinfecting viral antigens, and this physical proximity rather than activation status per se is an important determinant of preferential infection based on antigen specificity. These data demonstrate that preferential infection reduces the life span of HIV-specific CD4(+) T cells in vivo and thereby compromises the generation of effective immune responses to the virus itself; further, this central feature in the pathophysiology of HIV infection can be influenced by the cross-reactivity of responding CD4(+) T cells.  相似文献   

13.
The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1-PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8(+) T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8(+) T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8(+) T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8(+) T cells. Notably, cytomegalovirus (CMV)-specific CD8(+) T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8(+) T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8(+) T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8(+) repertoire.  相似文献   

14.
Chronic infection with the HIV results in poor HIV-specific CD4 T cell proliferation, but more recent analyses using intracellular cytokine staining demonstrated that IFN-gamma-producing, HIV-specific CD4 T cells can be detected for years in HIV-infected subjects. Because it is not known whether the majority of HIV-specific T cells are lost or become dysfunctional, we examined the kinetics of the T cell response over an extended period of time using a panel of 10 HLA-DR tetramers loaded with HIV p24 peptides. Tetramer+ CD4 T cells were present at a relatively high frequency during acute infection, but the size of these populations substantially contracted following suppression of viral replication. Short-term cessation of antiretroviral therapy resulted in a burst of viral replication and concomitant expansion of tetramer+ CD4 T cells, and these populations again contracted following reinitiation of therapy. The kinetics with which these cell populations contracted were characteristic of effector T cells, a conclusion that was supported by their phenotypic (CCR7-CD45RA-) and functional properties (IFN-gamma+). Continued high-level viremia resulted in the physical loss of the majority of tetramer+ CD4 T cells, and the decline of HIV p24-specific CD4 T cells occurred more rapidly and was more substantial than the reduction of total CD4 T cell numbers. We conclude that the population of HIV p24-specific CD4 T cells is initially responsive to changes in the levels of viral Ags, but that the majority of these cells are lost in a setting of chronic viremia.  相似文献   

15.
The limited success of HIV vaccine candidates to date highlights our need to better characterize protective cell-mediated immunity (CMI). While HIV-specific CD8(+) T cell responses have been defined largely by measuring gamma interferon (IFN-γ), these responses are not always protective, and it is unclear whether the same epitopes would predominate if other functional parameters were examined. Here, we assessed the epitope specificity of HIV-specific CD8(+) T cell responses by multiparametric flow cytometry, measuring five CD8(+) T cell functions (IFN-γ, macrophage inflammatory protein 1β [MIP-1β], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], and proliferative capacity) in 24 chronically HIV-infected individuals. Sixty-nine epitope-specific responses to 50 epitopes within p24 were measured. Surprisingly, most epitope-specific responses were IFN-γ negative (50/69 responses). Many responses had polyfunctional (33%) and proliferative (19%) components. An inverse association between IL-2 and proliferation responses was also observed, contrary to what was described previously. We confirm that long-term nonprogressors (LTNP) have more polyfunctional responses and also have higher-magnitude and broader p24-specific proliferation and higher levels of IL-2 and TNF-α production than do progressing controls. Together, these data suggest that the specificity of CD8(+) T cell responses differs depending on the immunological readout, with a 3.5-fold increase in breadth detected by including multiple parameters. Furthermore, the identification of epitopes that elicit polyfunctional responses reinforces the need for the comprehensive evaluation of HIV vaccine candidates, and these epitopes may represent novel targets for CMI-based vaccines.  相似文献   

16.
Identification of T-cell subsets that are infected in vivo is essential to understanding the pathogenesis of human immunodeficiency virus (HIV) disease; however, this goal has been beset with technical challenges. Here, we used polychromatic flow cytometry to sort multiple T-cell subsets to 99.8% purity, followed by quantitative PCR to quantify HIV gag DNA directly ex vivo. We show that resting memory CD4(+) T cells are the predominantly infected cells but that terminally differentiated memory CD4(+) T cells contain 10-fold fewer copies of HIV DNA. Memory CD8(+) T cells can also be infected upon upregulation of CD4; however, this is infrequent and HIV-specific CD8(+) T cells are not infected preferentially. Na?ve CD4(+) T-cell infection is rare and principally confined to those peripheral T cells that have proliferated. Furthermore, the virus is essentially absent from na?ve CD8(+) T cells, suggesting that the thymus is not a major source of HIV-infected T cells in the periphery. These data illuminate the underlying mechanisms that distort T-cell homeostasis in HIV infection.  相似文献   

17.
Recent studies of human immunodeficiency virus (HIV)-specific CD8(+) T cells have focused on responses to single, usually HLA-A2-restricted epitopes as surrogate measures of the overall response to HIV. However, the assumption that a response to one epitope is representative of the total response is unconfirmed. Here we assess epitope immunodominance and HIV-specific CD8(+) T-cell response complexity using cytokine flow cytometry to examine CD8(+) T-cell responses in 11 HLA-A2(+) HIV(+) individuals. Initial studies demonstrated that only 4 of 11 patients recognized the putative immunodominant HLA-A2-restricted p17 epitope SLYNTVATL, suggesting that the remaining subjects might lack significant HIV-specific CD8(+) T-cell responses. However, five of six SLYNTVATL nonresponders recognized other HIV epitopes, and two of four SLYNTVATL responders had greater responses to HIV peptides restricted by other class I alleles. In several individuals, no HLA-A2-restricted epitopes were recognized, but CD8(+) T-cell responses were detected to epitopes restricted by other HLA class I alleles. These data indicate that an individual's overall CD8(+) T-cell response to HIV is not adequately represented by the response to a single epitope and that individual major histocompatibility complex class I alleles do not predict an immunodominant response restricted by that allele. Accurate quantification of total HIV-specific CD8(+) T-cell responses will require assessment of the response to all possible epitopes.  相似文献   

18.
Human immunodeficiency virus-specific CD8(+) T cells are highly sensitive to spontaneous and CD95/Fas-induced apoptosis, and this sensitivity may impair their ability to control HIV infection. To elucidate the mechanism behind this sensitivity, in this study we examined the levels of antiapoptotic molecules Bcl-2 and Bcl-x(L) in HIV-specific CD8(+) T cells from HIV-infected individuals. Bcl-2 expression was markedly decreased in HIV-specific CD8(+) T cells compared with CMV-specific and total CD8(+) T cells from HIV-infected individuals as well as total CD8(+) T cells from healthy donors. CD8(+) T cell Bcl-2 levels inversely correlated with spontaneous and CD95/Fas-induced apoptosis of CD8(+) T cells from HIV-infected individuals. HIV-specific CD8(+) T cells also had significantly lower levels of Bcl-x(L) compared with CMV-specific CD8(+) T cells. Finally, IL-15 induces both Bcl-2 and Bcl-x(L) expression in HIV-specific and total CD8(+) T cells, and this correlated with apoptosis inhibition and increased survival in both short- and long-term cultures. Our data indicate that reduced Bcl-2 and Bcl-x(L) may play an important role in the increased sensitivity to apoptosis of HIV-specific CD8(+) T cells and suggest a possible mechanism by which IL-15 increases their survival.  相似文献   

19.
Human immunodeficiency virus (HIV)-specific T-cell responses are thought to play a key role in viral load decline during primary infection and in determining the subsequent viral load set point. The requirements for this effect are unknown, partly because comprehensive analysis of total HIV-specific CD4(+) and CD8(+) T-cell responses to all HIV-encoded epitopes has not been accomplished. To assess these responses, we used cytokine flow cytometry and overlapping peptide pools encompassing all products of the HIV-1 genome to study total HIV-specific T-cell responses in 23 highly active antiretroviral therapy na?ve HIV-infected patients. HIV-specific CD8(+) T-cell responses were detectable in all patients, ranging between 1.6 and 18.4% of total CD8(+) T cells. HIV-specific CD4(+) T-cell responses were present in 21 of 23 patients, although the responses were lower (0.2 to 2.94%). Contrary to previous reports, a positive correlation was identified between the plasma viral load and the total HIV-, Env-, and Nef-specific CD8(+) T-cell frequency. No correlation was found either between viral load and total or Gag-specific CD4(+) T-cell response or between the frequency of HIV-specific CD4(+) and CD8(+) T cells. These results suggest that overall frequencies of HIV-specific T cells are not the sole determinant of immune-mediated protection in HIV-infection.  相似文献   

20.
DNA vaccines target dendritic cells (DC) to induce Ag-specific immune responses in animals. Potent HIV-specific immunity could be achieved by efficient priming of the immune system by DNA vaccines. We investigated a novel DNA vaccine approach based on the role of growth factors in DC expansion and differentiation. To this end, we constructed chimeric genes encoding the HIV envelope glycoproteins physically linked to the extracellular domain of Fms-like tyrosine kinase receptor-3 ligand (FLex; a DC growth factor; both mouse (m)FLex and human (h)FLex). These chimeric gene constructs synthesized biologically active, oligomeric FLex:gp120 fusion proteins and induced DC expansion (CD11c(+)CD11b(+)) when injected i.v. into mice. This DC expansion is comparable to that achieved by FLex DNA encoding native FLex protein. When delivered intramuscularly as DNA vaccines, hFLex:gp120 induced high frequencies of gp120-specific CD8(+) T cells in the presence or absence of FLex DNA-induced DC expansion, but gp120 and mFLex:gp120 elicited only low to moderate levels of Ag-specific CD8(+) T cells. In contrast, mFLex:gp120 induced high levels of anti-gp120 Abs under identical conditions of DNA vaccination. However, the Ab levels in mice immunized with DNA vaccines encoding hFLex:gp120 and gp120 proteins were low without DC expansion, but reached high levels comparable to that elicited by mFLex:gp120 only after the second boost in the presence of DC expansion. Importantly, the gp120-specific CD8(+) T cells persisted at high frequency for 114 days (16 wk) after a booster injection. These experiments provide insight into the importance of modulating DC function in vivo for effective genetic vaccination in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号