首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

2.
Question: Can current understory vegetation composition across an elevation gradient of Pinus ponderosa‐dominated forests be used to identify areas that, prior to 20th century fire suppression, were characterized by different fire frequencies and severities (i.e., historic fire regimes)? Location: P. ponderosa‐dominated forests in the montane zone of the northern Colorado Front Range, Boulder and Larimer Counties, Colorado, USA. Methods: Understory species composition and stand characteristics were sampled at 43 sites with previously determined fire histories. Indicator species analyses and indirect ordination were used to determine: (1) if stands within a particular historic fire regime had similar understory compositions, and (2) if understory vegetation was associated with the same environmental gradients that influence fire regime. Classification and regression tree analysis was used to ascertain which species could predict fire regimes. Results: Indicator species analysis identified 34 understory species as significant indicators of three distinct historic fire regimes along an elevation gradient from low‐ to high‐elevation P. ponderosa forests. A predictive model derived from a classification tree identified five species as reliable predictors of fire regime. Conclusions: P. ponderosa‐dominated forests shaped by three distinct historic fire regimes have significantly different floristic composition, and current understory compositions can be used as reliable indicators of historical differences in past fire frequency and severity. The feasibility demonstrated in the current study using current understory vegetation properties to detect different historic fire regimes, should be examined in other fire‐prone forest ecosystems.  相似文献   

3.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

4.
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.  相似文献   

5.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

6.
The role of humans in historic fire regimes has received little quantitative attention. Here, we address this inadequacy by developing a fire history in northeastern Oklahoma on lands once occupied by the Cherokee Nation. A fire event chronology was reconstructed from 324 tree-ring dated fire scars occurring on 49 shortleaf pine (Pinus echinata) remnant trees. Fire event data were examined with the objective of determining the relative roles of humans and climate over the last four centuries. Variability in the fire regime appeared to be significantly influenced by human population density, culture, and drought. The mean fire interval (MFI) within the 1.2 km2 study area was 7.5 years from 1633 to 1731 and 2.8 years from 1732 to 1840. Population density of Native American groups including Cherokee was significantly correlated (r?=?0.84) with the number of fires per decade between 1680 and 1880. Coincident with the Removal of the Cherokee and other native peoples from the eastern United States and immigrations into northeast Oklahoma, the MFI decreased to 1.8 years. After 1925 fire intervals were considerably lengthened (MFI?=?16 years) due to fire suppression and decreased fire use until the recent prescribed burning by The Nature Conservancy. Many of the historic fire years that were previously shown to be synchronous across Missouri and Arkansas during drought years were also fire years at this site. Overall the frequency of fires was weakly associated with drought compared to human population density.  相似文献   

7.
8.
Question: How frequent and variable were fire disturbances in longleaf pine ecosystems? Has the frequency and seasonality of fire events changed during the past few centuries? Location: Kisatchie National Forest, Western Gulf Coastal Plain, longleaf pine–bluestem ecosystem, in relatively rough topography adjacent to the Red River, Louisiana, USA. Methods: Cross‐sections of 19 remnant pines exhibiting 190 fire scars were collected from a 1.2‐km2 area. Tree‐rings and fire scars were precisely dated and analysed for the purpose of characterizing past changes in fire and tree growth. Temporal variability in fire occurrence and seasonality was described for the pre‐ and post‐European settlement periods. Seasonality of historic fires was determined by the scar position within the rings. The relationship between fire and drought was investigated using correlation and superposed epoch analysis. Results: The mean fire return interval for the period 1650‐1905 was 2.2 years (range 0.5 to 12 yr). Significant new findings include: evidence for years of biannual burning, temporal variability in fire seasonality, an increase in fire frequency and percentage of trees scarred circa 1790, and synchronous growth suppression and subsequent release of trees coinciding with land‐use changes near the turn of the 20th century. Drought conditions appeared unrelated to the occurrence of fire events or fire seasonality. Conclusions: Multi‐century fire history records from longleaf pine ecosystems are difficult to obtain due to historic land‐use practices and the species high resistance to scarring; however, our results indicate potential for reconstructing detailed fire histories in this ecosystem. Fire scars quantitatively documented one of the most frequent fire regimes known. Fire regime information, such as the temporal variability in fire intervals, prevalence of late‐growing season fire events and biannual burning, provide a new perspective on the dynamics of longleaf pine fire regimes.  相似文献   

9.
Abstract. In the Colorado Front Range, disturbances and climatic variation influence stand structure of ponderosa pine (Pinus ponderosa) along the lower timberline ecotone. Over the past 100 years there has been a shift to a greater density and extent of ponderosa pine at the forest-grassland boundaries. Ponderosa pine regeneration at lower timberline appears to be influenced by fires in the 1860s and decreased grazing pressure in the 1970s–1980s. Climatic variation may also have influenced age structure, even though analyses of age structure at a 10-year class scale prevented the detection of climatic influences occurring at a finer scale. These changes in disturbance regimes, possibly together with moister springs/early summers, created favourable conditions for the increase in density and extent of ponderosa pine at lower timberline ecotone.  相似文献   

10.
Landscape fire is a key but poorly understood component of the global carbon cycle. Predicting biomass consumption by fire at large spatial scales is essential to understanding carbon dynamics and hence how fire management can reduce greenhouse gas emissions and increase ecosystem carbon storage. An Australia‐wide field‐based survey (at 113 locations) across large‐scale macroecological gradients (climate, productivity and fire regimes) enabled estimation of how biomass combustion by surface fire directly affects continental‐scale carbon budgets. In terms of biomass consumption, we found clear trade‐offs between the frequency and severity of surface fires. In temperate southern Australia, characterised by less frequent and more severe fires, biomass consumed per fire was typically very high. In contrast, surface fires in the tropical savannas of northern Australia were very frequent but less severe, with much lower consumption of biomass per fire (about a quarter of that in the far south). When biomass consumption was expressed on an annual basis, biomass consumed was far greater in the tropical savannas (>20 times that of the far south). This trade‐off is also apparent in the ratio of annual carbon consumption to net primary production (NPP). Across Australia's naturally vegetated land area, annual carbon consumption by surface fire is equivalent to about 11% of NPP, with a sharp contrast between temperate southern Australia (6%) and tropical northern Australia (46%). Our results emphasise that fire management to reduce greenhouse gas emissions should focus on fire prone tropical savanna landscapes, where the vast bulk of biomass consumption occurs globally. In these landscapes, grass biomass is a key driver of frequency, intensity and combustion completeness of surface fires, and management actions that increase grass biomass are likely to lead to increases in greenhouse gas emissions from savanna fires.  相似文献   

11.
In the Sierra Nevada, distributions of forest tree species are largely controlled by the soil-moisture balance. Changes in temperature or precipitation as a result of increased greenhouse gas concentrations could lead to changes in species distributions. In addition, climatic change could increase the frequency and severity of wildfires. We used a forest gap model developed for Sierra Nevada forests to investigate the potential sensitivity of these forests to climatic change, including a changing fire regime. Fuel moisture influences the fire regime and couples fire to climate. Fires are also affected by fuel loads, which accumulate according to forest structure and composition. These model features were used to investigate the complex interactions between climate, fire, and forest dynamics. Eight hypothetical climate-change scenarios were simulated, including two general circulation model (GCM) predictions of a 2 × CO2 world. The response of forest structure,species composition, and the fire regime to these changes in the climate were examined at four sites across an elevation gradient. Impacts on woody biomass and species composition as a result of climatic change were site specific and depended on the environmental constraints of a site and the environmental tolerances of the tree species simulated. Climatic change altered the fire regime both directly and indirectly. Fire frequency responded directly to climate's influence on fuel moisture, whereas fire extent was affected by changes that occurred in either woody biomass or species composition. The influence of species composition on fuel-bed bulk density was particularly important. Future fires in the Sierra Nevada could be both more frequent and of greater spatial extent if GCM predictions prove true. Received 5 May 1998; accepted 4 November 1998.  相似文献   

12.
Abstract We investigated effects of fire frequency, seasonal timing, and plant community on patchiness and intensity of prescribed fires in subtropical savannas in the Long Pine Key region of Everglades National Park, Florida (U.S.A.). We measured patchiness and intensity in different plant communities along elevation gradients in “fire blocks.” These blocks were prescribed burned at varying times during the lightning season and at different frequencies between 1995 and 2000. Fire frequency, seasonal timing, and plant community all influenced the patchiness and intensity of prescribed fires. Fires were less patchy and more intense, probably because of drier conditions and pyrogenic fuels, in higher elevation plant communities (e.g., high pine savannas) than in lower elevation communities (e.g., long‐hydroperiod prairies). In all plant communities fires became increasingly patchy and less intense as the wet season progressed and moisture accumulated in fuels. Frequent prescribed fire resulted in increased patchiness but a wider range of intensities; higher intensities appeared to result from regrowth of more flammable vegetation. Our study suggests that frequent early lightning season prescribed fires produce a wider range of post‐fire conditions than less frequent late lightning season prescribed fires. Our study also suggests that natural early lightning season fires readily carried through pine savannas and short‐hydroperiod prairies, but lower elevation long‐hydroperiod prairies functioned as firebreaks. Natural fires probably crossed these firebreaks only during drier years, potentially producing large landscape‐level fires. Knowledge of how patchily and intensely fires burn across a savanna landscape should be useful for developing landscape‐level fire management.  相似文献   

13.
Bekker  Matthew F.  Taylor  Alan H. 《Plant Ecology》2001,155(1):15-28
Species distribution and abundance patterns in the southern Cascades are influenced by both environmental gradients and fire regimes. Little is known about fire regimes and variation in fire regimes may not be independent of environmental gradients or vegetation patterns. In this study, we analyze variation in fire regime parameters (i.e., return interval, season, size, severity, and rotation period) with respect to forest composition, elevation, and potential soil moisture in a 2042 ha area of montane forest in the southern Cascades in the Thousand Lakes Wilderness (TLW). Fire regime parameters varied with forest composition, elevation, and potential soil moisture. Median composite and point fire return intervals were shorter (4-9 yr, 14-24 yr) in low elevation and more xeric white fir (Abies concolor)-sugar pine (Pinus lambertiana) and white fir-Jeffrey pine (P. jeffreyi) and longest (20-37 yr, 20-47 yr) in mesic high elevation lodgepole pine (Pinus contorta) and red fir (Abies magnifica)-mountain hemlock (Tsuga mertensiana) forests. Values for mid-elevation red fir-white fir forests were intermediate. The pattern for fire rotation lengths across gradients was the same as for fire return intervals. The percentage of fires that occurred during the growing season was inversely related to elevation and potential soil moisture. Mean fire sizes were larger in lodgepole pine forests (405 ha) than in other forest groups (103-151 ha). In contrast to other parameters, fire severity did not vary across environmental and compositional gradients and >50% of all forests burned at high severity with most of the remainder burning at moderate severity. Since 1905, fire regimes have become similar at all gradient positions because of a policy of suppressing fire and fire regime modification will lead to shifts in landscape scale vegetation patterns.  相似文献   

14.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

15.
Aim The goal of this study was to understand better the role of interannual and interdecadal climatic variation on local pre‐EuroAmerican settlement fire regimes in fire‐prone Jeffrey pine (Pinus jeffreyi Grev. & Balf.) dominated forests in the northern Sierra Nevada Mountains. Location Our study was conducted in a 6000‐ha area of contiguous mixed Jeffrey pine‐white fir (Abies concolor Gordon & Glend.) forest on the western slope of the Carson Range on the eastern shore of Lake Tahoe, Nevada. Methods Pre‐EuroAmerican settlement fire regimes (i.e. frequency, return interval, extent, season) were reconstructed in eight contiguous watersheds for a 200‐year period (1650–1850) from fire scars preserved in the annual growth rings of nineteenth century cut stumps and recently dead pre‐settlement Jeffrey pine trees. Superposed epoch analysis (SEA) and correlation analysis were used to examine relationships between tree ring‐based reconstructions of the Palmer Drought Severity Index (PDSI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO) and pre‐EuroAmerican fire regimes in order to assess the influence of drought and equatorial and north Pacific teleconnections on fire occurrence and fire extent. Results For the entire period of record (1650–1850), wet conditions were characteristic of years without fires. In contrast, fire years were associated with drought. Drought intensity also influenced fire extent and the most widespread fires occurred in the driest years. Years with widespread fires were also preceded by wet conditions 3 years before the fire. Widespread fires were also associated with phase changes of the PDO, with the most widespread burns occurring when the phase changed from warm (positive) to cold (negative) conditions. Annual SOI and fire frequency or extent were not associated in our study. At decadal time scales, burning was more widespread during decades that were dryer and characterized by La Niña and negative PDO conditions. Interannual and interdecadal fire–climate relationships were not stable over time. From 1700 to 1775 there was no interannual relationship between drought, PDO, and fire frequency or extent. However, from 1775 to 1850, widespread fires were associated with dry years preceded by wet years. This period also had the strongest association between fire extent and the PDO. In contrast, fire–climate associations at interdecadal time scales were stronger in the earlier period than in the later period. The change from strong interdecadal to strong interannual climate influence was associated with a breakdown in decadal scale constructive relationships between PDO and SOI. Main conclusions Climate strongly influenced pre‐settlement pine forest fire regimes in northern Sierra Nevada. Both interannual and interdecadal climatic variation regulated conditions conducive to fire activity, and longer term changes in fire frequency and extent correspond with climate‐mediated changes observed in both the northern and southern hemispheres. The sensitivity of fire regimes to shifts in modes of climatic variability suggests that climate was a key regulator of pine forest ecosystem structure and dynamics before EuroAmerican settlement. An understanding of pre‐EuroAmerican fire–climate relationships may provide useful insights into how fire activity in contemporary forests may respond to future climatic variation.  相似文献   

16.
The Boundary Waters Canoe Area (BWCA) Wilderness of northern Minnesota, USA, ememplifies how fire management and natural disturbance determine forest composition and landscape structure at a broad scale. Historically, the BWCA (>400,000 ha) was subject to crown fires with a mean rotation period of 50–100 y. Fires often overlapped, creating a mosaic of differently aged stands with many stands burning frequently or, alternatively, escaping fire for several centuries. The BWCA may never have reached a steady-state (defined as a stable landscape age-class structure). In the early 1900s, a diminished fire regime began creating a more demographically diverse forest, characterized by increasingly uneven-aged stands. Shade-tolerant species typical of the region began replacing the shade-intolerant species that composed the fire-generated even-aged stands. Red pine (Pinus resinosa) stands are relatively uncommon in the BWCA today and are of special concern. The replacement of early-to-midsuccessional species is occurring at the scale of individual gaps, producing mixed-species multiaged forests. We used LANDIS, a spatially explicit forest landscape model, to investigate the long-term consequences of fire reintroduction or continuing fire absence on forest composition and landscape structure. Fire reintroduction was evaluated at three potential mean fire rotation periods (FRP): 50,100, and 300 y. Our model scenarios predict that if fire reintroduction mimics the natural fire regime (bracketed by FRP = 50 and 100 y), it will be most successful at preserving the original species composition and landscape structure, although jack pine (Pinus banksiana) may require special management. With limited fire reintroduction, all of the extant species are retained although species dominance and landscape structure will be substantially altered. If fire remains absent, many fire-dependent species will be lost as local dominants, including red pine. The landscape appears to be in a state of rapid change and a shift in management to promote fire may need to be implemented soon to prevent further deviation from historic, presettlement conditions.  相似文献   

17.
The storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO2]. Temperate forests represent significant above‐ground carbon (AGC) “sinks” because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above‐ground biomass releasing carbon to the atmosphere, and the long‐term application of different fire‐regimes select for specific plant communities that sequester carbon at different rates. We investigated the latter process by quantifying AGC storage at 104 sites in the Sydney Basin Bioregion, Australia, relative to differences in components of the fire regime: frequency, severity and interfire interval. To predict the potential impacts of future climate change on fire/AGC interactions, we stratified our field sites across gradients of mean annual temperature and precipitation and quantified within‐ and between‐factor interactions between the fire and climate variables. In agreement with previous studies, large trees were the primary AGC sink, accounting for ~70% of carbon at sites. Generalised additive models showed that mean annual temperature was the strongest predictor of AGC storage, with a 54% near‐linear decrease predicted across the 6.1°C temperature range experienced at sites. Mean annual precipitation, fire frequency, fire severity and interfire interval were consistently poor predictors of total above‐ground storage, although there were some significant relationships with component stocks. Our results show resilience of AGC to frequent and severe wildfire and suggest temperature mediated decreases in forest carbon storage under future climate change predictions.  相似文献   

18.
Aim Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west‐central Great Plains and to identify whether it was mediated by climate variability. Location Our study took place in a 400‐km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA. Methods Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability. Results Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures. Main conclusions Most ponderosa pine woodlands pre‐date widespread Euro‐American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid‐20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains.  相似文献   

19.
The flammable ecosystems are evolutionary dependent on the periodic action of fire. Several environmental factors, both at local and landscape scales, can affect fire regimes in these ecosystems differently. Here, we evaluated the influence of local and landscape features on two parameters of the fire regime of a flammable protected area of the Brazilian savanna: The Chapada Diamantina National Park. We characterized both fire frequency and the time since the last fire, from 1990 to 2019 and measured five environmental predictors (tree canopy cover, altitude, water surface, predominant land use and distance to the nearest municipality). We used Generalized Additive Models for Location, Scale and Shape (GAMLSS) to assess the influence of environmental predictors on the measured fire regime parameters. We found a large interannual variation in the total annual area burned in the studied period. In total, 68 % of the protected area (1030 km2) was burned at least once and 32 % (486 km2) was unaffected by fires during the study period. Predominant land use, distance to the nearest municipality, tree cover and the interaction between tree cover and altitude were negatively related to fire frequency, while the water surface and altitude positively influenced fire frequency in the park. Compared to older fires, recent fires occurred in landscapes at lower altitudes and with lower tree cover. Our results demonstrate that the fire frequency and time since the last fire were highly variable across the park, reflecting the strong influence of landscape heterogeneity on their parameters.  相似文献   

20.
Wildfire is the major natural agent of disturbance in interior Alaska. We examined the magnitude of human impact on fire by comparing fire regime between individual 1-km2 grid cells designated for fire suppression with lands where fires are allowed to burn naturally. Two-thirds of interior Alaska has an essentially natural fire regime, with few human ignitions, negligible suppression activity, and many large lightning-caused fires. In the 17% of land that is designated for fire suppression due to its proximity to communities and roads, there was a 50% reduction in the proportion of area burned from 1992–2001, relative to areas without suppression. The remaining 16% of land serves as a buffer, receives some suppression, and has an intermediate fire regime. Even though there were 50 times more fires and the fire season began two months earlier in lands designated for suppression, most of these fires were lit by people and remained small because fires tended to occur at times and places less favorable for fire spread and were more accessible to fire fighters compared to lands not designated for suppression. Even in the absence of fire suppression, human-caused fires were less likely to exceed 400 ha compared to lightning-caused fires. Fire suppression reduced area burned in all fuel types but was somewhat more effective in less flammable (non-forest) vegetation. Alaska’s fire policy of focusing suppression efforts on a small proportion of the fire-prone region maximizes the ecological and social benefits associated with fire-dependent ecosystem services, while minimizing the social and ecological costs of suppression. Application of this policy to other areas would require well-informed managers and stakeholders to make difficult decisions about the relative costs and benefits of fire across ecologically and culturally variable landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号