首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Herpes simplex virus-1 is a large double-stranded DNA virus that is self-sufficient in a number of genome transactions. Hence, the virus encodes its own DNA replication apparatus and is capable of mediating recombination reactions. We recently reported that the catalytic subunit of the HSV-1 DNA polymerase (UL30) exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities that are integral to base excision repair. Base excision repair is required to maintain genome stability as a means to counter the accumulation of unusual bases and to protect from the loss of DNA bases. Here we have reconstituted a system with purified HSV-1 and human proteins that perform all the steps of uracil DNA glycosylase-initiated base excision repair. In this system nucleotide incorporation is dependent on the HSV-1 uracil DNA glycosylase (UL2), human AP endonuclease, and the HSV-1 DNA polymerase. Completion of base excision repair can be mediated by T4 DNA ligase as well as human DNA ligase I or ligase IIIα-XRCC1 complex. Of these, ligase IIIα-XRCC1 is the most efficient. Moreover, ligase IIIα-XRCC1 confers specificity onto the reaction in as much as it allows ligation to occur in the presence of the HSV-1 DNA polymerase processivity factor (UL42) and prevents base excision repair from occurring with heterologous DNA polymerases. Completion of base excision repair in this system is also dependent on the incorporation of the correct nucleotide. These findings demonstrate that the HSV-1 proteins in combination with cellular factors that are not encoded by the virus are capable of performing base excision repair. These results have implications on the role of base excision repair in viral genome maintenance during lytic replication and reactivation from latency.Herpes simplex virus-1 (HSV-1)2 is a large double-stranded DNA virus with a genome of ∼152 kilobase pairs (for reviews, see Refs. 1 and 2). HSV-1 switches between lytic replication in epithelial cells and a state of latency in sensory neurons during which there is no detectable DNA replication (1). Viral DNA replication is mediated by seven essential virus-encoded factors (35). Of these, two encode subunits of the viral replicase (for review, see Refs. 6 and 7). The catalytic subunit (UL30) exhibits DNA polymerase (Pol), 3′-5′ proofreading exonuclease, and RNase H activities (811). UL30 exists as a heterodimer with the UL42 protein that confers a high degree of processivity on the Pol (1117).Viral DNA replication is accompanied by vigorous recombination that leads to the formation of large networks of viral DNA replication intermediates (18). The HSV-1 single-strand DNA-binding protein (ICP8) has been shown to play a major role in mediating these recombination reactions (1921). One role for the high frequency of recombination is to restart DNA replication at sites of fork collapse. Further mechanisms that contribute to genome maintenance are processes that survey and repair damage to the DNA to ensure the availability of a robust replication template. In this regard base excision repair (BER) is essential to remove unusual bases from the DNA and to repair apurinic/apyrimidinic (AP) sites resulting from spontaneous base loss (for review, see Ref. 22). With respect to HSV-1, a recent study showed that viral DNA from infected cultured fibroblasts contains a steady state of 2.8–5.9 AP sites per viral genome equivalent (23). Because AP sites are non-instructional, the failure to repair such sites would terminate viral replication. Indeed, UL30 cannot replicate beyond a model AP site (tetrahydrofuran residue) (23), indicating that the virus must enable a process to repair such lesions. In this regard HSV-1 possesses several enzymes that would safeguard from the accumulation of unusual bases, specifically uracil, and base loss. Hence, HSV-1 encodes a uracil DNA glycosylase (UDG) (UL2) as well as a dUTPase to reduce the pool of dUTP and prevent misincorporation by the viral Pol (24, 25). Moreover, we recently showed that the catalytic subunit of the viral Pol (UL30) exhibits AP and 5′-deoxyribose phosphate (dRP) lyase activities (26). The presence of a virus-encoded UDG and DNA lyase indicates that HSV-1 has the capacity to perform integral steps of BER, specifically for the removal of uracil. Indeed, the excision of uracil may be important for viral replication. Hence, it has been shown that uracil substitutions in the viral origins of replication alters their recognition by the viral initiator protein (27). Moreover, whereas UL2 may be dispensable for viral replication in fibroblast (24), UL2 mutants exhibit reduced neurovirulence and a decreased frequency of reactivation from latency (28). Thus, UDG action in HSV-1 may be important for viral reactivation after quiescence in neuronal cells during which the genome may accumulate uracil as a result of spontaneous deamination of cytosine. In another herpesvirus, cytomegalovirus, the viral UDG was shown to be required for the transition to late-phase DNA replication (29, 30). Consequently, it is possible that BER plays a significant role in various aspects of the herpesvirus life cycle.In mammalian single-nucleotide BER initiated by monofunctional DNA glycosylases, the resulting AP sites are incised hydrolytically at the 5′ side by AP endonuclease (APE), generating a 3′-OH. This is followed by template-directed incorporation of one nucleotide by Pol β to generate a 5′-dRP flap (22, 31, 32). The 5′-dRP residue is subsequently removed by the 5′-dRP lyase activity of Pol β to leave a nick with a 3′-OH and 5′-phosphate that is ligated by DNA ligase I or the physiologically more relevant ligase IIIα-XRCC1 complex (for review, see Refs. 33 and 34). Here we show that the HSV-1 UDG (UL2) and Pol (UL30) cooperate with human APE and human ligase IIIα-XRCC1 complex to perform BER in vitro. This finding has implications on the role of BER in viral genome maintenance during lytic replication and in the emergence of the virus from neuronal latency.  相似文献   

10.
11.
12.
13.
14.
15.
Processing of the 3′ terminus of tRNA in many organisms is carried out by an endoribonuclease termed RNase Z or 3′-tRNase, which cleaves after the discriminator nucleotide to allow addition of the universal -CCA sequence. In some eubacteria, such as Escherichia coli, the -CCA sequence is encoded in all known tRNA genes. Nevertheless, an RNase Z homologue (RNase BN) is still present, even though its action is not needed for tRNA maturation. To help identify which RNA molecules might be potential substrates for RNase BN, we carried out a detailed examination of its specificity and catalytic potential using a variety of synthetic substrates. We show here that RNase BN is active on both double- and single-stranded RNA but that duplex RNA is preferred. The enzyme displays a profound base specificity, showing no activity on runs of C residues. RNase BN is strongly inhibited by the presence of a 3′-CCA sequence or a 3′-phosphoryl group. Digestion by RNase BN leads to 3-mers as the limit products, but the rate slows on molecules shorter than 10 nucleotides in length. Most interestingly, RNase BN acts as a distributive exoribonuclease on some substrates, releasing mononucleotides and a ladder of digestion products. However, RNase BN also cleaves endonucleolytically, releasing 3′ fragments as short as 4 nucleotides. Although the presence of a 3′-phosphoryl group abolishes exoribonuclease action, it has no effect on the endoribonucleolytic cleavages. These data suggest that RNase BN may differ from other members of the RNase Z family, and they provide important information to be considered in identifying a physiological role for this enzyme.Maturation of tRNA precursors requires the removal of 5′ and 3′ precursor-specific sequences to generate the mature, functional tRNA (1). In eukaryotes, archaea, and certain eubacteria, the 3′-processing step is carried out by an endoribonuclease termed RNase Z or 3′-tRNase (26). However, in some bacteria, such as Escherichia coli, removal of 3′ extra residues is catalyzed by any of a number of exoribonucleases (7, 8). The major determinant for which mode of 3′-processing is utilized appears to be whether or not the universal 3′-terminal CCA sequence is encoded (2, 9). Thus, for those tRNA precursors in which the CCA sequence is absent, endonucleolytic cleavage by RNase Z right after the discriminator nucleotide generates a substrate for subsequent CCA addition by tRNA nucleotidyltransferase (13, 10). In view of this role for RNase Z in 3′-tRNA maturation, it is surprising that E. coli, an organism in which the CCA sequence is encoded in all tRNA genes (2), nevertheless contains an RNase Z homologue (11), because its action would appear not to be necessary. In fact, the physiological function of this enzyme in E. coli remains unclear, because mutants lacking this protein have no obvious growth phenotype (12). Hence, there is considerable interest in understanding the enzymatic capabilities of this enzyme.The E. coli RNase Z homologue initially was identified as a zinc phosphodiesterase (11) encoded by the elaC gene (now called rbn) (13). Subsequent work showed that the protein also displayed endoribonuclease activity on certain tRNA precursors in vitro (6, 14). However, more recent studies revealed that this protein actually is RNase BN, an enzyme originally discovered in 1983 and shown to be essential for maturation of those bacteriophage T4 tRNA precursors that lack a CCA sequence (15, 16). Using synthetic mimics of these T4 tRNA precursors, RNase BN was found to remove their 3′-terminal residue as a mononucleotide to generate a substrate for tRNA nucleotidyltransferase. Based on these reactions RNase BN was originally thought to be an exoribonuclease (13, 15, 17). However, subsequent work by us and others showed that it can act as an endoribonuclease on tRNA precursors (13, 18). RNase BN is required for maturation of tRNA precursors in E. coli mutant strains devoid of all other 3′-tRNA maturation exoribonucleases, although it is the least efficient RNase in this regard (7, 19). Thus, under normal circumstances, it is unlikely that RNase BN functions in maturation of tRNA in vivo except in phage T4-infected cells (15, 16).To obtain additional information on what types of RNA molecules might be substrates for RNase BN and to clarify whether it is an exo- or endoribonuclease, we have carried out a detailed examination of its catalytic properties and substrate specificity. We show here that RNase BN has both exo- and endoribonuclease activity and that it can act on a wide variety of RNA substrates. These findings suggest that E. coli RNase BN may differ from other members of the RNase Z family of enzymes.  相似文献   

16.
17.
Heterogeneous ribonucleoprotein K (hnRNP K) binds to the 5′ untranslated region of the hepatitis C virus (HCV) and is required for HCV RNA replication. The hnRNP K binding site on HCV RNA overlaps with the sequence recognized by the liver-specific microRNA, miR-122. A proteome chip containing ∼17,000 unique human proteins probed with miR-122 identified hnRNP K as one of the strong binding proteins. In vitro kinetic study showed hnRNP K binds miR-122 with a nanomolar dissociation constant, in which the short pyrimidine-rich residues in the central and 3′ portion of the miR-122 were required for hnRNP K binding. In liver hepatocytes, miR-122 formed a coprecipitable complex with hnRNP K. High throughput Illumina DNA sequencing of the RNAs precipitated with hnRNP K was enriched for mature miR-122. SiRNA knockdown of hnRNP K in human hepatocytes reduced the levels of miR-122. These results show that hnRNP K is a cellular protein that binds and affects the accumulation of miR-122. Its ability to also bind HCV RNA near the miR-122 binding site suggests a role for miR-122 recognition of HCV RNA.MicroRNAs (miRNAs) are a class of noncoding RNA of ∼22-nucleotides in length that can regulate gene expression by either targeting RNA for degradation or suppressing their translation through base pairing to the RNAs (1). Since their discovery in 1993 in Caenorhabditis elegans, miRNAs have been found in many species and are involved in the regulation of proliferation, differentiation, apoptosis, and development (1, 2). Moreover, miRNAs are also critical factors in the development of cancers, neurodegenerative diseases, and infectious diseases (3).MiR-122 is a highly abundant RNA in hepatocytes that regulates lipid metabolism, regeneration, and neoplastic transformation (46). In addition, miR-122 is required for the replication of the hepatitis C virus (HCV), a positive-strand RNA virus that infects over 170 million people worldwide (79). MiR-122 binds to a conserved sequence in the 5′ untranslated region (UTR) of the HCV RNA to increase the stability of the HCV RNA (10). Silencing of miR-122 can abolish HCV RNA accumulation in non-human primates (11). The expression of human miR-122 in non-hepatic cells can confer the ability to replicate HCV RNA (12). MiR-122 is one of the most critical host factors for HCV replication.We previously reported that the HCV RNA sequence that anneals to miR-122 is recognized by the heterogeneous ribonucleoprotein K (hnRNP K), a multifunctional RNA-binding protein known to be involved in RNA processing, translation, and the replication of several RNA viruses (1315). In an unbiased screen for proteins from human proteome chips containing over 17,000 proteins, we identified 40 proteins that bind mature miR-122, including hnRNP K. Recombinant hnRNP K recognizes short pyrimidine sequences in miR-122 in vitro and a similar sequence in the HCV 5′ UTR. In hepatocytes endogenous hnRNP K can form a coprecipitable complex with miR-122, whether or not the cells contain replicating HCV. HnRNP K is thus a protein that binds a mature microRNA.  相似文献   

18.
19.
20.
Mouse mammary tumor virus (MMTV) is a complex retrovirus that encodes at least three regulatory and accessory proteins, including Rem. Rem is required for nuclear export of unspliced viral RNA and efficient expression of viral proteins. Our previous data indicated that sequences at the envelope-3′ long terminal repeat junction are required for proper export of viral RNA. To further map the Rem-responsive element (RmRE), reporter vectors containing various portions of the viral envelope gene and the 3′ long terminal repeat were tested in the presence and absence of Rem in transient transfection assays. A 476-bp fragment that spans the envelope-long terminal repeat junction had activity equivalent to the entire 3′-end of the mouse mammary tumor virus genome, but further deletions at the 5′- or 3′-ends reduced Rem responsiveness. RNase structure mapping of the full-length RmRE and a 3′-truncation suggested multiple domains with local base pairing and intervening single-stranded segments. A secondary structure model constrained by these data is reminiscent of the RNA response elements of other complex retroviruses, with numerous local stem-loops and long-range base pairs near the 5′- and 3′-boundaries, and differs substantially from an earlier model generated without experimental constraints. Covariation analysis provides limited support for basic features of our model. Reporter assays in human and mouse cell lines revealed similar boundaries, suggesting that the RmRE does not require cell type-specific proteins to form a functional structure.Mouse mammary tumor virus (MMTV)3 has multiple regulatory and accessory genes (1, 2). The known accessory genes specify a dUTPase (3), which is believed to be involved in retroviral replication in non-dividing cells (4), as well as superantigen (Sag). Sag is a transmembrane glycoprotein that is involved in the lymphocyte-mediated transmission of MMTV from maternal milk in the gut to susceptible epithelial cells in the mammary gland (5, 6). The Sag protein expressed by endogenous (germline) MMTV proviruses has been reported to provide susceptibility to infection by exogenous MMTVs or the bacterial pathogen, Vibrio cholerae (7). These results suggest a role for MMTV Sag in the host innate immune response.MMTV recently was shown to be a complex retrovirus (1). Complex retroviruses encode RNA-binding proteins that facilitate nuclear export of unspliced viral RNA by using a leucine-rich nuclear export sequence (8), which binds to chromosome region maintenance 1 (Crm1)(9), whereas simple retroviruses have a cis-acting constitutive transport element that directly interacts with components of the Tap/NXF1 pathway (10). Similar to other complex retroviruses, MMTV encodes a Rev-like protein, regulator of export/expression of MMTV mRNA (Rem) (1). Rem is translated from a doubly spliced mRNA into a 33-kDa protein that contains nuclear and nucleolar localization signals as well as a predicted RNA-binding motif and leucine-rich nuclear export sequence (1, 2). Our previous experiments indicated that Rem affects export of unspliced viral RNA, and a reporter vector that relies on luciferase expression from unspliced RNAs has increased activity in the presence of Rem (1). Sequences at the MMTV envelope-long terminal repeat (LTR) junction were required within the vector for Rem-induced expression, suggesting that the LTR contains all or part of the Rem-responsive element (RmRE). Very recently, Müllner et al. (11) identified a 490-nt region spanning the MMTV envelope-3′ LTR region, which was predicted to form a highly structured RNA element. This element confers Rem responsiveness on heterologous human immunodeficiency virus type 1 (HIV-1)-based plasmid constructs in transfection experiments.Experiments using other retroviral export proteins have demonstrated considerable variation in the size of the response elements. A minimal Rev-responsive element (RRE) in the human immunodeficiency virus type 1 (HIV-1) genomic RNA is 234 nt, the human T-cell leukemia virus Rex-responsive element is 205 nt (1214), whereas the Rec-responsive element (RcRE; also known as the K-RRE) of human endogenous retrovirus type K is 416 to 429 nt (15, 16). Most response elements are confined to the 3′-end of their respective retroviral genomes (either to the envelope or LTR regions) (14, 15), but 5′ Rev-response elements also have been identified (17). Studies indicate that the secondary structure is a critical factor for proper function of retroviral response elements (18), and that multiple stem-loops are required. Export proteins multimerize on these elements to allow activity (19).In the current study, we have used deletion mutations within a reporter vector based on the 3′-end of the MMTV genome to define a 476-nt element necessary for maximum Rem responsiveness. This element spans the envelope-LTR junction of the MMTV genome as previously reported (1). However, a secondary structure model generated using digestions of the RmRE by RNases V1, T1, and A as experimental constraints differs significantly from the published structure (11) and more closely resembles complex retroviral response elements. Transfection experiments indicated that the MMTV RmRE could function in both mouse and human cells, suggesting that conserved cellular proteins interact with Rem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号