首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fertilization and development in salmonids occurs almost exclusively within freshwater environments (< 1 ppt). A less common life history strategy in this group of fishes is the brackish-water resident life history, where entire life cycles occur in brackish water (> 1 ppt). In the present study, we tested the hypothesis that differences in rearing environment (fresh or brackish water) results in significant differences in the ability of lake trout to ionoregulate when faced with a salinity challenge later in life. To test this, genetically similar lake trout were fertilized and raised at either 0 or 5 ppt saltwater. At approximately 240 days post hatch, lake trout from both rearing environments were acutely transferred to 20 ppt salt water or their respective rearing environments as a control. Individuals were sampled at time 0, 1, 7, and 14 days post transfer. Fish raised in 5 ppt transferred to 20 ppt saltwater had significantly higher gill Na+ K+-ATPase activity, gill Na+ K+-ATPase α1b expression, and lower plasma osmolality when compared to freshwater reared lake trout transferred to 20 ppt across various time points. Additionally, the 5 ppt control treatment had greater overall aerobic scope than 0 ppt control fish and those transferred from 0 ppt to 20 ppt. These data imply that populations exhibiting a brackish-water resident life history, as has been observed in Arctic Canada, may have an advantage over freshwater reared conspecifics when foraging in marine influenced environments and colonizing new locations in coastal regions.  相似文献   

2.
Survival, growth, haemolymph osmolality and tissue water of Penaeus chinensis (Osbeck) juveniles (0.11 ± 0.04 g) were investigated, after they were acclimated to 10, 20, 30 and 40 ppt from 33 ppt for 14 days at 24°C, and then acclimated to 12, 18, 24 and 30°C at each salinity for 14 days. The survival of shrimp was the lowest at 10 ppt and 12°C. Growth of shrimp increased with increased temperature in the range 12–24°C, with no significant difference among four salinity levels at 18, 24 and 30°C. Haemolymph osmolality increased with increased salinity, and decreased with increased temperature. The isosmotic point computed from the linear relationship between haemolymph osmolality and medium osmolality was 664, 632, 629 and 602 mOsm/kg which is equivalent to 25.2, 24.1, 24.0 and 23.1 ppt at 12, 18, 24 and 30°C, respectively. Tissue water decreased with increased medium osmolality and haemolymph osmolality. The slope obtained from the relationship between haemolymph osmolality and medium osmolality indicated that there is an impairment of osmoregulatory ability for the P. chinensis juveniles at 12°C.  相似文献   

3.
Low-salinity adaptability was investigated in a flatfish spotted halibut Verasper variegatus during the period from late metamorphic larvae to early juveniles by a 20-day rearing experiment under different salinity regimes (1, 4, 8, 16 and 32 ppt). Effects of low-salinity on growth and development were examined and the changes in the prolactin (PRL) production level in the pituitary and the gill chloride cell morphology were examined as physiological backgrounds for low salinity adaptation. PRL cells and chloride cells were identified by immunocytochemistry with a specific antiserum for PRL188 and Na+,K+-ATPase. Most of the fish exposed to over 4 ppt survived for 20 days, but all the fish exposed to 1 ppt died within 5 days. Fish kept in intermediate salinities (8, 16 ppt) grew significantly better than those in the control group (32 ppt). Fish exposed to 4 ppt attained almost the same body length as the control group at 20 days after transfer, although these fish showed an abnormally dark body color as well as delayed development. These results suggested that spotted halibut has a high-adaptability to low-salinity environments and prefers an intermediate salinity near iso-osmolality (about 12 ppt) from the late metamorphic larval stage, but does not completely adapt to a hypoosmotic of 4 ppt salinity or less than half of the osmolality. The percentage of PRL-cell volume to pituitary volume was significantly higher at 4 ppt than in the control group. The chloride cells in gill filaments were significantly larger at 4 ppt than in the control group. These results suggest that juveniles could adapt to a low-salinity environment due to the activation of PRL production and enlargement of chloride cells. These laboratory findings suggest that late metamorphic larvae and early juveniles of spotted halibut may utilize a low salinity environment such as estuarine tidal flats or very shallow coastal areas as their nursery grounds in the sea.  相似文献   

4.
ABSTRACT

The effects of cadmium concentration (0, 2.5 and 5 mg L?1) on melanocyte-stimulating hormone (MSH), melanophore index (MI), and melanophore number (MN), as well as a microscopic examination of scale melanocytes in tilapia (Oreochromis niloticus Linnaeus, 1757) was evaluated at different salinity levels (0, 5 and 15 ppt). The levels of MSH, MI, and MN were lower in Cd-exposed fish than in control fish (not exposed to Cd) at salinity level of 0 and 5 ppt. In ppt, however these levels of MSH, MI and MN in control and Cd-exposed fish were not significantly different. In the media without Cd, the levels of MSH, MI and MN were not significantly different at all salinities. The morphological changes of melanophores were higher in Cd-exposed fish than in control fish at salinity 0 and 5 ppt, respectively. These morphological changes were not significantly different in the control fish at all salinities as well as in fish exposed to 0–5 mg L?1 Cd at salinity of 15 ppt. This study therefore demonstrates that the toxic effect of Cd on MSH levels and melanophore morphology decreased with increasing salinity. Further, due to the sensitivity of chromatophores to Cd, melanophore morphology is proposed as a biomarker of Cd exposure in aquatic ecosystems.  相似文献   

5.
This study assessed the impact of salinity on whiting (Sillaginodes punctata) in an attempt to understand the mechanisms by which salinity could potentially influence habitat selection and growth of King George whiting in southern Australia. The experiment included whiting of two age classes, young of the year (YOY) and 2+ year, at three salinities (30, 40, 50 ppt). YOY whiting showed no significant difference in length or weight gain, specific growth rate, feed intake, food conversion ratio or condition factor when exposed to the three salinities for 72 day. Plasma osmolality of YOY whiting was not significantly different at any salinity, although it was significantly lower than that of 2+ year whiting. The 2+ year whiting showed significantly higher plasma osmolality than the YOY. Blood plasma potassium and chloride levels of 2+ year fish at 50 ppt were significantly higher than those at 30 ppt and 40 ppt. Blood sodium levels at 50 ppt were significantly higher than at 30 ppt but the sodium level at 40 ppt was not different from 30 ppt or 50 ppt. Haematocrit of 2+ whiting was significantly higher at 30 than at 50 ppt while haematocrit at 40 ppt was not different from 30 or 50 ppt. The 2+ year‐old whiting had a more pronounced increase in plasma osmolality and plasma ions at high salinities, indicating poorer osmoregulatory capacity in older fish. This study provides physiological evidence to partially explain habitat occupancy and growth in relation to salinity of different age groups of whiting in southern Australia.  相似文献   

6.
Navaga (Eleginus navaga), an Arctic gadoid fish, were sampled in the White Sea in spring and body fluid osmolality analysed. At the time of capture the water in the White Sea was close to freezing ( -1°C) and salinity was about 20 ppt. Navaga serum was found to be isosmotic (approximately 590 mosmol/l) with that of the surrounding water. Thus, the osmotic concentration in the body fluids of navaga is one of the highest reported for teleost fish and is comparable to that of the strictly marine Nototheniids from the Antarctic  相似文献   

7.
In line with current conservation efforts, some success in the captive breeding of the seahorse Hippocampus kuda (Teleostei: Syngnathidae) has been achieved. To evaluate the salinity tolerance of these hatchery‐bred juveniles, 9‐week‐old H. kuda were transferred without prior acclimatization from ambient full strength seawater (32–33 ppt) to salinities ranging from freshwater to 85 ppt. Survival, growth, and total body water content were determined after 4 and 18 days of exposure. Juvenile H. kuda are able to survive in dilute seawater (15 ppt) for at least 18 days without any compromise in growth (both wet and dry body weight), survival, and total body water. Fish abruptly transferred to freshwater succumbed within 4–24 h, while survival of 5 ppt‐reared fish decreased to ca. 65% in 18 days. Although 10 ppt‐reared seahorses had growth and survival comparable with the control (30 ppt seawater), total body water was significantly elevated indicating reduced adaptability. The upper limit of H. kuda salinity tolerance was 50 ppt. Fish reared at salinities ≥55 ppt succumbed within 24 h. Like several other marine teleosts, growth and survival of juvenile H. kuda tended to peak in diluted seawater salinities of 15 and 20 ppt. These results indicate the possibility of growing hatchery‐bred H. kuda in brackishwater environments.  相似文献   

8.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

9.
Studies have examined adding protein to carbohydrate–electrolyte rehydration drinks, but the effects of protein in isolation remain unknown. Ten subjects completed two trials in which they were dehydrated (~2 % of pre-exercise body mass) by intermittent cycling in the heat. Subjects then rehydrated (150 % total mass loss) over 1 h with mineral water (W) or mineral water plus 20 g L?1 whey protein isolate (WP) and remained in the laboratory for a further 4 h. Blood and urine samples were provided pre-exercise, post-exercise, post-rehydration and every hour thereafter. From blood samples, serum osmolality, change in plasma volume and plasma albumin content was determined, whilst the volume and osmolality of urine samples were determined. There was no difference between trials for total urine volume [W: 1,234 (358) mL; WP: 1,306 (268) mL; P = 0.409], drink retention [W: 40 (14) %; WP: 37 (14) %; P = 0.322] or net fluid balance [W: ?605 (318) mL; WP: ?660 (274) mL; P = 0.792] 4-h post-rehydration. Plasma volume was greater 3 and 4 h post-drinking during WP, and plasma albumin content relative to pre-exercise was increased 1–4 h post-drinking in WP only. These results suggest that addition of 20 g L?1 whey protein isolate neither enhances nor inhibits post-exercise rehydration, when a volume equivalent to 150 % of sweat losses is ingested in 1 h. As post-exercise nutritional requirements are multifactorial (rehydration, glycogen resynthesis, myofibrillar/mitochondrial protein synthesis), these data demonstrate that when post-exercise protein intake might benefit recovery or adaptation, this can be achieved without compromising rehydration.  相似文献   

10.
Jellyfish live in complex environments and must continually make behavioural choices. In field observations, adult Aurelia labiata were confronted with a conflict between swimming up elicited by touch of the manubrium and swimming down elicited by low salinity. Following a touch, downward-swimming medusae (1.5–2.0 m deep) turned and swam to within 0.5 m of the surface when the salinity in the top 1.5 m of the water column was greater than 20 ppt but medusae uniformly refused to swim up into the top 1.25 m when the salinity was less than 20 ppt even after being touched three times. The central nervous system of A. labiata appears to have neural circuitry that specifies their response when medusae encounter stimuli that elicit incompatible behaviours. Upward-swimming adult medusae had animal, vegetable or cellulose (paper) material dispersed ahead of them. Medusae captured each material on the bell margin and transported it to a gastric pouch. Medusae displayed only minor behavioural differences in the process. Having sensory, neural and muscular systems organized to capture and pass to the stomach, a huge variety of materials allows medusae to survive in different seasons and environments.  相似文献   

11.
In the present study, quantitative data were collected to clarify the relationship between calling, call structure and eggs produced in a captive population of red drum Sciaenops ocellatus. Sciaenops ocellatus were held in four tanks equipped with long‐term acoustic loggers to record underwater sound throughout a simulated reproductive season. Maximal sound production of captive S. ocellatus occurred when the photoperiod shifted from 13·0 to 12·5 h of light, and the water temperature decreased to c. 25° C. These captive settings are similar to the amount of daylight and water temperatures observed during the autumn, which is the primary spawning period for S. ocellatus. Sciaenops ocellatus exhibited daily patterns of calling with peak sound production occurring in the evenings between 0·50 h before dark and 1·08 h after dark. Spawning occurred only on evenings in which S. ocellatus were calling, and spawning was more productive when S. ocellatus produced more calls with longer durations and more pulses. This study provides ample evidence that sound production equates to spawning in captive S. ocellatus when calls are longer than 0·8 s and contain more than seven pulses. The fact that more calling, longer calls and higher sound pressure levels are associated with spawns that are more productive indicates that acoustic metrics can provide quantitative information on spawning in the wild.  相似文献   

12.
The aquaculture sector has recently focused on alternative food sources due to increased costs and limited resources. Live food sources, such as invertebrates, have important roles in digestion processes of fish. It was aimed to determine the reproduction efficiency of the horse leech, Haemopis sanguisuga, which is expected to be used as an alternative live nutritional source in aquaculture in this study. The study was conducted at ambient temperature in the laboratory conditions for three months. A total of 25 gravid leeches with an average body mass of 6.91 ± 2.20 g were used. The leeches lost up to 75% of their body mass and laid 4.30 ± 1.49 cocoons at 12.0 ± 8.2 days interval during cocoon laying period. Leeches stopped laying cocoon when the temperature fell to 16 °C. The average of offspring hatched from the cocoons was 6.45 ± 2.86. The length–body mass relationship of the offspring was exponential (W = 0.012L2.809, R2 = 0.898). The results from the current study indicate that the basic biological parameter affecting the reproduction efficiency of H. sanguisuga is the size of the broodstock leeches, and reproduction activity weakens the broodstocks.  相似文献   

13.
This research aimed at investigating the light synchronization and endogenous origin of daily expression rhythms of eight key genes involved in epigenetic mechanisms (DNA methylation and demethylation) in zebrafish gonads. To this end, 84 zebrafish were distributed into six tanks, each one containing 14 fish (7 males and 7 females). Animals were subjected to 12 h light:12 h dark cycles (LD, lights on at ZT0 h) and fed randomly three times a day during the light phase. Locomotor activity rhythms were recorded in each tank for 20 days to test their synchronization to light. Then, zebrafish were fasted for one day and gonad samples were collected every 4 h during a 24 h cycle (ZT2, 6, 10, 14, 18, and 22 h). The results revealed that most of the epigenetic genes investigated exhibited a significant daily rhythm. DNA methylation genes (dnmt4, dnmt5, dnmt7) exhibited a daily rhythm of expression with a nocturnal acrophase (ZT14:01~ZT22:17 h), except for dnmt7 in males (ZT2:25 h). Similarly, all DNA demethylation genes (tet2, tdg, mb4, gadd45aa, and apobec2b) revealed the existence of statistically significant daily rhythms, except for gadd45aa in females. In females, tdg, mb4, and apobec2b presented a nocturnal peak (ZT14:20 ~ ZT22:04 h), whereas the tet2 acrophase was diurnal (ZT4:02 h). In males, tet2, tdg, and gadd45aa had nocturnal acrophases (ZT18:26~ZT21:31 h), whereas mb4 and apobec2b displayed diurnal acrophases (ZT5:28 and ZT4:02 h, respectively). To determine the endogenous nature of gene expression rhythms, another experiment was performed: 12 groups of 14 fish (7 males and 7 females) were kept in complete darkness (DD) and sampled every 4 h during a 48 h cycle (CT2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46 h). Under DD, most of the genes (7 out of 8) presented circadian rhythmicity with different endogenous periodicities (tau), suggesting that the epigenetic mechanisms of DNA methylation and demethylation in the gonads follow an internal control, functioning as part of the translation network linking the environment into somatic signals in fish reproduction.  相似文献   

14.
The osmoregulatory action of 17beta-estradiol (E2) was examined in the euryhaline teleost Sparus auratas. In a first set of experiments, fish were injected once with vegetable oil containing E2 (1, 2 and 5 microg/g body weight), transferred 12h after injection from sea water (SW, 38 ppt salinity) to hypersaline water (HSW, 55 ppt) or to brackish water (BW, 5 ppt salinity) and sampled 12h later (i.e. 24 h post-injection). In a second experiment, fish were injected intraperitoneally with coconut oil alone or containing E2 (10 microg/g body weight) and sampled after 5 days. In the same experiment, after 5 days of treatment, fish of each group were transferred to HSW, BW and SW and sampled 4 days later (9 days post-implant). Gill Na+,K+ -ATPase activity, plasma E2 levels, plasma osmolality, and plasma levels of ions (sodium and calcium), glucose, lactate, protein, triglyceride, and hepatosomatic index were examined. Transfer from SW to HSW produced no significant effects on any parameters assessed. E2 treatment did not affect any parameter. Transfer from SW to BW resulted in a significant decrease in plasma osmolality and plasma sodium but did not affect gill Na+,K+ -ATPase activity. A single dose of E2 attenuated the decrease in these parameters after transfer from SW to BW, but was without effect on gill Na+,K+ -ATPase activity. An implant of E2 (10 microg/g body weight) for 5 days significantly increased plasma calcium, hepatosomatic index, plasma metabolic parameters, and gill Na+,K+ -ATPase activity. In coconut oil-implanted (sham) fish, transfer from SW to HSW or BW during 4 days significantly elevated gill Na+,K+ -ATPase. Gill Na+,K+ -ATPase activity remained unaltered after transfer of E2-treated fish to HSW or BW. However, in E2-treated fish transferred from SW to SW (9 days in SW after E2-implant), gill Na+,K+ -ATPase activity decreased with respect to HSW- or BW-transferred fish. Shams transferred to HSW showed increased levels of lactate, protein, and trygliceride in plasma, while those transferred to BW only displayed increased trygliceride levels. E2-treated fish transferred to HSW showed higher protein levels without any change in other plasmatic parameters, while those transferred to BW displayed elevated plasma glucose levels but decreased osmolality and protein levels. These results substantiate a chronic stimulatory action of E2 on gill Na+,K+ -ATPase activity in the euryhaline teleost Sparus auratas.  相似文献   

15.
Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.  相似文献   

16.
Because marine bivalves are osmoconformers, their cells may be exposed to widely fluctuating osmolality in some habitats. In vitro studies were conducted to evaluate the effect of changes in salinity on protein synthesis of oyster hemocytes. Increasing salinity from a control value of 20–25 ppt to 32–98 ppt decreased the rate of incorporation of amino acid into protein, but did not qualitatively alter the pattern of protein synthesis. On the other hand, decreasing salinity to 3.5–4 ppt not only decreased the rate of protein synthesis, but also altered the types of protein produced. At least a third of the cells remained viable at low salinity and resumed the control pattern of protein synthesis within hours after return to the normal medium. The response to hypoosmotic shock was different from the response to a hyperthermic shock, each stressor inducing expression of a characteristic set of proteins. Preferential synthesis of these proteins may represent an adaptation to preserve or restore oyster cell functions under adverse conditions.  相似文献   

17.
An experiment was conducted to study fatty liver disease caused by different ether extract levels in diets of juvenile Sciaenops ocellatus. Juvenile S. ocellatus (n=1,260; initial body weight approximately 2.73 g) were divided into nine treatment groups (triplicate groups per treatment) and fed in aquatic cases by a recirculated filtered rearing system; the temperature of the aquatic cases was maintained at 23.2±2.0° for 8 weeks. Nine kinds of diets containing different protein (38, 42, 46%) and ether extract levels (4, 8, 12%) were used. Results showed that the relative growth ratio and survival ratio of the fish fed on medium lipid diets (8%) or high ether extract diets (12%) were significantly lower than those of the fish fed on low ether extract diets (4%) (p < 0.05). There was a positive correlation between the ether extract contents in hepatopancreas of fish and the ether extract contents of diets. At the end of the experimental period, the fish of the nine experimental groups suffered from different degrees of fatty liver disease and serious illness, and death occurred in a large number of fish fed on medium (8%) and high ether extract diets (12%) from the third test week; mortality was highest in the fifth test week. The ill S. ocellatus showed symptoms of loss of appetite, lack of movement, black skin, and weight loss and eventually died. The main pathological change in ill fish was fatty liver disease. Their hepatopancreas were swollen and pale, accompanied by fatty degeneration, fatty necrosis of hepatocytes, and atrophy of the pancreas. Ultrastructural changes showed the presence of many lipid droplets and granules in the mitochondria, endoplasmic reticulum, and cell plasm of hepatocytes. Study results indicated that all the nine kinds of diets with different lipid or protein levels could cause nutritional fatty liver disease in juvenile S. ocellatus. The pathological severity and serious level of fatty liver disease in the tested fish positively correlated with the contents of the ether extract, but not with those of protein, in test diets. The increase in the level of ether extract in test diets was responsible for the direct cause of illness or death in juvenile S. ocellatus. Translated from Acta Hydrobiologica Sinica, 2005, 29(1) (in Chinese)  相似文献   

18.
ABSTRACT

We evaluated the daily changes in immunological and hematological factors in tilapia (Oreochromis niloticus) after an immunization period with a subsequent challenge. Experiments were divided into two phases: Phase 1 (immunization): 144 fish were distributed into two groups with 72 fish in six tanks. One group (T1) was immunized, comprising six vaccination time points (ZT schedule = ZT2 h, ZT6 h, ZT10 h, ZT14 h, ZT18 h, ZT22 h). The same schedule was applied to the other group, but with saline solution (non-vaccinated: T2). Both groups remained in the laboratory for 30 days (considered the immunization period). Phase 2 (challenge): on day 30, both vaccinated and non-vaccinated groups were challenged with Streptococcus agalactiae (2.0 × 107 CFU mL?1) following the same ZT schedule to stimulate the immune response without leading to widespread infection and mortality. On day 45, blood and head kidney samples were collected during the same ZT schedule. The variations in time of the following parameters within each group were evaluated: hematology, peroxidase activity, IgM, tnf-α3, tgf-β1, il-1β and il-12 gene expression. No significant mortality was observed for the groups or the ZT schedule (p > 0.05). Daily rhythms with diurnal acrophases were found in T2 for il12, tnf-α3 and tgf-β1 expression gene, while the acrophases of the peroxidase level, hematocrit and thrombocytes were at nighttime (p < 0.05). In contrast, most of the parameters in the vaccinated tilapia showed no daily rhythms (p > 0.05), except IgM. For all the parameters, the interaction effect between time and treatment (vaccinated and non-vaccinated groups) depended on ZT. Our results reveal that the humoral and non-specific immune system displayed a circadian rhythm based on the light-dark cycle, which could be affected by the vaccination procedure in tilapia.  相似文献   

19.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

20.
Acute injections of different hormones to induce ovulation in mature ocellated puffer, Takifugu ocellatus, collected from natural waters during the spawning season, were carried out to develop a reliable protocol for mass production of seed in this species. All experimental fish were divided into seven groups treated with: a saline injection (control), single or two injections of luteinizing hormone‐releasing hormone analog (LHRH‐a; single injection: 50 μg kg?1, two injections: 10 and 40 μg kg?1), single or two injections of pituitary (single injection: 6 mg kg?1, two injections: 1 and 5 mg kg?1) and single or two injections of human chorionic gonadotropin (hCG; single injection: 2500 IU kg?1, two injections: 500 and 2000 IU kg?1), respectively. The percentage of fish that ovulated in six hormonal treatments reached 100%, either with a single injection or with two injections whereas the fish in control group failed to spawn. There were no significant differences among all hormonal treatments in egg production, fertilization rate, or hatch rate (P > 0.05) except time to ovulation between a single injection group and the two‐injection group (P < 0.05). The fertilized eggs of ocellated puffer were spherical, demersal, and adhesive. They had a mean oocyte diameter of 1.487 ± 0.106 mm (range: 1.404–1.560). The egg membrane was transparent and yolk was buff in color, containing a cluster of small oil globules. Thirty‐four successive stages of embryonic development were identified and characterized. Fertilized eggs incubated at 18–20°C generally commenced hatching at 144 h after fertilization. Newly hatched larvae were about 3.26–3.45 mm in length. The induced ovulation technique using acute injections of hormones is an important step in the development of the culture of the ocellated puffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号