首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
The aim of this study was to investigate the influences of different stress models on the antioxidant status and lipid peroxidation (LPO) in erythrocytes of rats. Swiss-Albino female rats (3 months old) were used in this study. Rats were randomly divided into the following four groups; control group (C), cold stress group (CS), immobilization stress group (IS) and cold+immobilization stress group (CS+IS). Control group was kept in an animal laboratory (22 &#45 2°C). Rats in CS group were placed in cold room (5°C) for 15 min/day for 15 days. Rats in IS group were immobilized for 180 min/day for 15 days. Rats in CS+IS group were exposed to both cold and immobilization stresses for 15 days. At the end of experimental periods, the activities of glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and concentration of reduced glutathione (GSH) were measured. LPO was determined by measuring the contents of thiobarbituric acid-reactive substances (TBARS). Cu,Zn-SOD activity and TBARS concentration were increased after cold and immobilization stresses, but CAT and GSH-Px activities and GSH levels were decreased. Immobilization stress decreased the activity of G-6-PD. The activities of G-6-PD, CAT and GSH-Px, and the level of GSH were lower in CS+IS group than in the control group. Cu,Zn-SOD activity and TBARS levels were increased in CS+IS group when compared with the control group. From these findings, three stress models are thought to cause oxidative stress.  相似文献   

2.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

3.
The aim of this study was to analyze the antioxidative effect of repaglinide in the heart of alloxan-induced diabetic rabbits. The activities of superoxide dismutase (Cu,Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione (GSH), ascorbic acid (AA), products of lipid peroxidation (LPO) and protein carbonyl groups (PCG) were estimated after 4 and 8 weeks of repaglinide treatment (1 mg daily). At significance level p<0.05, in diabetic heart the activities of Cu,Zn-SOD and CAT were elevated as compared to control values (by 60.7% and 55.3% for Cu,Zn-SOD, and by 89.7% and 77.4% for CAT after 4 and 8 weeks, respectively). The level of AA was diminished by 52.5% and 41.5% while GSH-Px and GSSG-R activities were decreased after 4 weeks of experiment (by 11.5% and 14.4%, respectively). GSH level was diminished by 33.2% after 8 weeks. Simultaneously, in diabetic heart the levels of LPO and PCG were elevated as compared to control values (by 51.6% and 111.3% for LPO, and by 72.0% and 132.9% for PCG after 4 and 8 weeks, respectively). In diabetic animals, repaglinide normalized GSH-Px activity and GSH level. It modified the activities of Cu,Zn-SOD, CAT and AA as compared to diabetic non-treated animals. In diabetic-treated rabbits the level of LPO was diminished as compared to diabetic non-treated animals, while the level of PCG was not affected. In the present study, repaglinide did not affect blood glucose and plasma insulin concentrations in diabetic rabbits. Nevertheless, the drug showed some beneficial antioxidative properties in the heart tissue.  相似文献   

4.
In the present study, the induction of oxidative stress was examined in the testis of alloxan-induced diabetic rabbits. In addition, the protective effect of repaglinide, an oral anti-diabetic, at a dose of 1 mg daily was studied after four and eight weeks of the treatment. For these purposes, the levels of superoxide dismutase (Cu,Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione (GSH), ascorbic acid (AA), lipid peroxidation products (LPO) and protein carbonyl groups (PCG) were quantified. Hyperglycemia resulted in significant increases in the antioxidative enzymes, Cu, Zn-SOD, CAT, GSH-Px, and GSSG-R after four and eight weeks, respectively. There was also an increase in GSH level, and a decrease in the level of AA. These effects were accompanied by an elevation in testicular LPO levels and PCG levels. Repaglinide was found to normalize the activity of GSSG-R and levels of GSH and AA, and blunted the increased lipid peroxidation, however no decrease in PCG levels were observed. In conclusion, some oxidative changes provoked in the testis of rabbits by hyperglycemia, were found to be reduced with repaglinide treatment at therapeutic dose.  相似文献   

5.
Summary The study was undertaken to analyze the effect of pioglitazone on superoxide dismutase (Cu, Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione (GSH), ascorbic acid (AA), lipid peroxidation products (LPO) and protein carbonyl groups (PCG) in the heart of alloxan-induced diabetic rabbits after 4 and 8 weeks of pioglitazone treatment. In diabetic animals, Cu, Zn-SOD and CAT were elevated by 60 and 55%, and 90 and 77% as compared to controls at 4 and 8 weeks, respectively. GSH-Px, GSSG-R and GSH were diminished by 11, 14 and 33% as compared to controls at 4 or 8 weeks. AA was diminished by 52 and 41%. At P <0.05, pioglitazone normalized the activities of Cu, Zn-SOD, GSH-Px and GSSG-R. The activity of CAT was modified as compared to diabetic non-treated rabbits. After pioglitazone treatment, GSH and AA were increased as compared to diabetic non-treated animals. In diabetic rabbits, LPO was elevated by 52 and 111% and normalized by pioglitazone treatment. PCG was elevated by 72 and 133% and diminished as compared to diabetic non-treated animals at 8 weeks. The study shows that pioglitazone reduces oxidative stress in the heart of diabetic rabbits. In therapy, similar action can improve the cardiovascular system of diabetic patients.  相似文献   

6.
Sulfite and related chemical such as sulfite salts and sulfur dioxide has been used as a preservative in food and drugs. This molecule has also been generated from the catabolism of sulfur-containing amino acids. Sulfite is a very reactive and potentially toxic molecule and has to be detoxified by the enzyme sulfite oxidase (SOX). The aim of this study was to investigate the effects of ingested sulfite on erythrocyte antioxidant status by measuring glucose-6-phosphate dehydrogenase (G-6-PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant status by measuring thiobarbituric acid reactive substances (TBARS) in normal and SOX-deficient rats. Rats were assigned to four groups (n = 10 rats/group) as follows; control (C), sulfite (CS), deficient (D), and deficient + sulfite (DS). SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten (W). Sulfite (25 mg/kg) was administered to the animals via their drinking water. At the end of 6 weeks, Erythrocyte G-6-PD, SOD, and GPx but not CAT activities were found to be significantly increased with and without sulfite treatment in SOX-deficient groups. Sulfite treatment alone was also significantly increased erythrocytes’ SOD activity in CS group compared to control. TBARS levels were found to be significantly increased in CS and DS groups and decreased in D group. When SOX-deficient rats treated with sulfite, TBARS level was still higher than other groups. In conclusion, these results suggested that erythrocyte antioxidant capacity, a defense mechanism against the oxidative challenge, increased by endogenous and exogenous sulfite due to its oxidant nature. This increase was also observed in CS and DS groups but it was insufficient to prevent lipid peroxidation.  相似文献   

7.
Impaired homeostasis under diabetic conditions is connected with the increased production of free radicals and deficiency of antioxidative systems. The aim of this study was to analyze the effect of new oral antidiabetic drug-pioglitazone on activity of antioxidant factors and lipid peroxidation in vivo. The liver and kidney of alloxan-induced diabetic rabbits were examined after 4 and 8 weeks of treatment. After 4 weeks of diabetes the superoxide dismutase (Cu,Zn-SOD) activity in the liver was diminished while the catalase (CAT) activity and the level of ascorbic acid (AA) were elevated in comparison with the control group. Pioglitazone treatment during 4 weeks decreased the catalase activity in relation to the control diabetic animals. After 8 weeks of diabetes the CAT activity in the liver was elevated in comparison with the control group. Pioglitazone treatment during 8 weeks decreased the CAT activity and the level of lipid peroxidation products (LPO), and increased the Cu,Zn-SOD activity in relation to control diabetic animals. After 4 weeks of diabetes in the kidney the Cu,Zn-SOD activity and the level of ascorbic acid (AA) were diminished while the CAT activity and the LPO level were elevated in comparison with the control group. Pioglitazone treatment during 4 weeks increased the AA and decreased the LPO levels in relation to non-treated diabetic animals. After 8 weeks of disease the Cu,Zn-SOD activity in the kidney was diminished in comparison with the control group. Pioglitazone during 8 weeks decreased the LPO level in relation to non-treated diabetic animals. This study shows that diabetic animals undergo an important oxidative stress, which is partially corrected by pioglitazone treatment.  相似文献   

8.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

9.
The aim of this study was to investigate the effects of vitamin E (alpha-tocopherol) and 17β-estradiol (E(2)) supplementation on malondialdehyde (MDA), glutathione (GSH), vitamin A, beta carotene, selenium-dependent glutathione peroxidase (GSH-Px), zinc-dependent superoxide dismutase (SOD), and copper/zinc-dependent catalase (CAT) values in the kidney of ovariectomized (OVX) diabetic rats. Forty-two female rats were randomly divided into seven equal groups as follows: group I, control; group II, OVX; group III, OVX+E(2); group IV, OVX+E(2)+alpha-tocopherol; group V, OVX+diabetic; group VI, OVX+diabetic+E(2); and group VII, OVX+diabetic+E(2)+alpha-tocopherol. E(2) (40?μg?kg(-1)/day) and alpha-tocopherol (100?μg?kg(-1)/day) were given. Bilateral ovariectomy was performed in all groups except group I. After 4?weeks, antioxidant and MDA levels in the kidney for all groups were analyzed. GSH-Px, CAT, SOD, GSH levels, vitamin A, and beta carotene levels were decreased in OVX group compared to those in the control group but MDA level was elevated via ovariectomy. However, E(2) and E(2)+alpha-tocopherol supplementations in OVX group was associated with an increase in the GSH-Px, GSH, CAT and Zn-SOD values, vitamin A, and beta carotene levels but a decrease in MDA levels in kidney. The MDA levels in the kidney of diabetic OVX rats were found higher than those in the control and OVX groups. However, GSH, GSH-Px, CAT, SOD, vitamin A, and beta carotene levels in kidney were lower in OVX diabetic rats. On the other hand, E(2) and E(2)+alpha-tocopherol supplementations to OVX diabetic rats have caused an increase in GSH-Px, CAT and SOD, GSH, vitamin A, and beta carotene levels but a decrease in MDA levels. In conclusion, the E(2) and E(2)+alpha-tocopherol supplementations to diabetic OVX and OVX rats may strengthen the antioxidant defense system by reducing lipid peroxidation, and therefore they may play a role in preventing renal disorders.  相似文献   

10.
研究了低温胁迫下嫁接和自根黄瓜叶片Mn-SOD、Cu/Zn-SOD和CAT mRNA基因表达和酶活性变化及其与抗冷性的关系.结果表明:低温胁迫下,嫁接与自根黄瓜叶片Cu/Zn-SOD、Mn-SOD mRNA基因相对表达量变化分别与其Cu/Zn-SOD、Mn-SOD活性变化相吻合,而CATmRNA相对表达量变化与其CAT活性变化并不一致;嫁接黄瓜叶片Cu/Zn-SOD和Mn-SOD mRNA相对表达量及SOD、Cu/Zn-SOD和Mn-SOD活性均高于自根黄瓜,MDA含量和电解质渗漏率均低于自根黄瓜,嫁接黄瓜较高的SOD基因表达量调控的较高SOD活性是其抗冷性强于自根黄瓜的主要因素;嫁接黄瓜的功能叶CAT mRNA相对表达量略高于自根黄瓜,而幼叶CAT mRNA相对表达量低于后者,但两者CAT活性差异不大,说明低温胁迫对嫁接黄瓜叶片CAT mRNA相对表达量及CAT活性的影响不大.  相似文献   

11.
This study was designed to investigate effect of alpha-lipoic acid (LA) on lipid peroxidation, nitric oxide production and antioxidant systems in rats exposed to chronic restraint stress. Twenty four male Wistar rats, aged three months, were divided into four groups: control (C), the group treated with LA (L), the group exposed to restraint stress (S) and the group exposed to stress and treated with LA (LS). Restraint stress was applied for 21 days (1 h/day) and LA (100 mg/kg/day) was injected intraperitonally to the L and LS groups for the same period. Restraint stress significantly decreased brain copper/zinc superoxide dismutase (Cu,Zn-SOD) and brain and retina glutathione peroxidase (GSH-Px) and catalase (CAT) activities compared with the control group. Thiobarbituric acid reactive substances (TBARS), nitrite and nitrate levels were significantly increased in the tissues of the S group compared with the C group. LA produced a significant decrease in brain and retina TBARS, nitrite and nitrate levels of the L and LS groups compared to their corresponding control groups. LA increased all enzyme activities in the tissues of the LS group compared to the S group. Our study indicated that LA is an ideal antioxidant candidate for the prevention of stress-induced lipid peroxidation.  相似文献   

12.
The mRNA levels of three antioxidant genes, Cu/Zn superoxide dismutase (SOD), catalase (CAT) and phospholipid hydroperoxide glutathione peroxidase (GSH-Px), were quantified with real-time qRT-PCR in liver of Atlantic salmon Salmo salar exposed to 80% (normoxia), 105% and 130% O2 saturation for 54 days. The salmon were then translocated and exposed to 90% and 130% O2 saturation for additional 72 days during smoltification. TBARS and vitamin E levels in liver and the levels of oxidized glutathione (GSSG), total glutathione (GSH) and the resulting oxidative stress index (OSI) in blood were quantified as traditional oxidative stress markers. No significant mean normalized expression (MNE) differences of SOD, CAT or GSH-Px were found in liver after hyperoxia exposure at the two sampling times. Significantly decreased OSI was found in smolt exposed to 130% O2 saturation after 126 days (n = 18, P < 0.0001), indicating hyperoxia-induced oxidative stress. No effects were seen on growth, or on the levels of thiobarbituric reactive substances (TBARS) and vitamin E in liver after the exposure experiment. Overall, the mRNA expression of SOD, CAT and GSH-Px in liver related poorly with the hyperoxic exposure regimes, and more knowledge are needed before the expressed levels of these antioxidant genes can be applied as biomarkers of hyperoxia in Atlantic salmon.  相似文献   

13.
Antioxidant enzymes and vitamins provide a defence against the damage of cells by reactive oxygen species in living systems. The effect of Cu, Se and vitamin E deficiencies on the antioxidant enzyme activities and lipid peroxide levels of chicken erythrocytes were investigated during 6 weeks of a depletion diet. CuZnSOD activity and the plasma Cu level of the Cu-deficient group which was fed a diet containing 0.2 mg Cu x kg(-1) were reduced to 62 and 71% respectively. GSH-Px activity of the Se-deficient group was decreased by 46% but by 21% in the Cu-deficient group. CAT activity values of Se- and Cu-deficient groups were increased by 28 and 10% respectively. The maximum increase of LPO levels in erythrocyte membranes was observed as 32% for the Se+E-deficient group. The LPO level of the Cu-deficient group which had decreased CuZnSOD and GSH-Px activity, was also observed to be significantly increased when compared with the controls (p < 0.05).  相似文献   

14.
Oxidative stress may be regarded as an imbalance between free radical production and opposing antioxidant defenses. Free radical oxidative stress is implicated in rat cerebral ischemia and naturaceutical antioxidants are dietary supplements that have been reported to have neuroprotective activity. Many studies have reported dietary sesame oil (SO) as an effective antioxidant. In the present study the neuroprotective effect of dietary SO was evaluated against middle cerebral artery occlusion (MCAO)-induced cerebral ischemia injury in rats. Rats were fed on diet (20% SO) for 15 days. The middle cerebral artery of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. The antioxidant properties of brain were measured as levels of reduced glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS). A decrease in the activity of all the enzymatic and non-enzymatic antioxidants was observed along with an increase in lipid peroxidation (LPO) in MCAO group. The neurobehavioral activity of rats was also observed by using videopath analyzer. Dietary SO improved the antioxidant status in MCAO+SO group when compared with MCAO group. The results of neurobehavioral activity also support our biochemical data. The results obtained suggest protective effect of SO against cerebral ischemia in rat brain through their antioxidant properties.  相似文献   

15.
The effect of diets containing antioxidant vitamins and trace elements on chicken tissue activities of SOD, CAT, GSH-Px and of LPO levels was investigated. Chickens, 45 weeks of age were divided into six groups: control group, Cu group (13.2 mg Cu kg(-1) diet); Se group (0.07 mg Se kg(-l) diet); vitamin E group (70 mg DL-alpha-tocopherol acetate kg(-1) diet) and a constant level vitamin C, 200 mg kg(-1) diet); vitamin A group (240 mg retinol acetate kg(-1) diet) and vitamin C group (500 mg ascorbic acid kg(-1) diet). Significant variation of these antioxidant enzyme activities and LPO levels according to gender was demonstrated statistically. In the Cu group, CuZnSOD activity in the liver, erythrocyte, kidney and heart significantly increased by 75, 40, 12, 12% respectively (P<0.05). MnSOD activity in the heart, liver, kidney and brain of the vitamin C and in the heart of Cu group were found to be increased by approximately 15%, while in liver tissue of the Cu group it was reduced by 19% (P<0.05). GSH-Px activities in the Se, vitamin E and C groups were significantly increased, conversely LPO levels decreased (P<0.001). CAT activities in the liver and heart of the vitamin C group were significantly decreased (by 32%), but in kidney tissue only that of the Cu group was increased from 30.2 +/- 4.767 to 144.49 +/- 6.93 U mg(-1) P<0.001. The resistance to stress of the vitamin E and C groups, which had significantly increased activities of antioxidant enzymes and decreased lipid peroxide levels, were determined in 60% moisture medium at 45 degrees C.  相似文献   

16.
闫苗  陈利丁  艾柳英  李帆  刘云超  董皓  孙淑静 《菌物学报》2018,37(12):1671-1679
为了探究温度胁迫下刺芹侧耳中过氧化氢酶和铜锌超氧化物歧化酶基因的作用,本研究通过RT-PCR方法对刺芹侧耳转录组数据库检索得到的过氧化氢酶(CAT)和铜锌超氧化物歧化酶(Cu/Zn-SOD)基因进行克隆,并利用荧光定量PCR分析在高低温胁迫下CAT和Cu/Zn-SOD基因的表达量,以探讨刺芹侧耳中这两种保护酶基因在高、低温胁迫下的响应特征。结果表明,克隆得到的CAT和Cu/Zn-SOD基因开放阅读框长度分别为1 581bp和582bp,分别编码526个和193个氨基酸,分子量分别为59.6kDa、19.62kDa,等电点分别为6.35、6.31。在高温(35℃)和低温(4℃)两组处理中,CAT和Cu/Zn-SOD基因的表达量及酶活均在处理48h时达到最高且与对照组呈现显著差异,说明两种基因在刺芹侧耳抵御高低温胁迫的过程中具有重要作用。本研究结果初步研究了温度胁迫下刺芹侧耳中CAT与Cu/Zn-SOD基因的生物学功能,为进一步解析刺芹侧耳抵抗温度胁迫的机理奠定基础。  相似文献   

17.
The ability of Cu(II)(2)(3,5-diisopropylsalicylate)(4), CuDIPS, which exhibits superoxide dismutase (SOD)-like activity, to prevent cisplatin-induced nephrotoxicity was examined in rats. Rats were divided into four groups and treated as follows: (i) vehicle control; (ii) cisplatin (16 mg/kg, intraperitoneally); (iii) CuDIPS (10 mg/kg, intraperitoneally); and (iv) cisplatin plus CuDIPS. Rats were sacrificed 3 days post-treatment. Cisplatin alone resulted in significantly increased plasma creatinine and urea. Administration of 10 mg/kg CuDIPS prevented the cisplatin-induced elevation of plasma creatinine and urea and protected against kidney damage. Relative to controls, rats that received cisplatin treatment displayed a decrease of reduced glutathione (GSH) and elevated platinum and thiobarbituric acid reactive substances (TBARS) levels in the kidney. In comparison with controls, activities of antioxidant enzymes (SOD, CAT, GSH-Px and GSH-Rd) were also reduced in the kidney of rats treated with cisplatin. Administration of 10 mg/kg CuDIPS prevented cisplatin-induced alterations in renal platinum, GSH, TBARS, and antioxidant enzyme activities. This study suggests that the protection offered by CuDIPS against cisplatin-induced nephrotoxicity is partly related to maintenance of renal antioxidant systems.  相似文献   

18.
Othman AI  El-Missiry MA  Amer MA  Arafa M 《Life sciences》2008,83(15-16):563-568
AIM: Chemotherapy with adriamycin (ADR) is limited by its iron-mediated pro-oxidant toxicity. Because melatonin (MLT) is a broad spectrum antioxidant, we investigated the ability of MLT to control iron, its binding proteins, and the oxidative damage induced by ADR. MAIN METHODS: ADR was given as single i.p. dose of 10 mg kg(-1) body weight into male rats. MLT at a dose of 15 mg kg(-1) was injected daily for 5 days before ADR treatment followed by another injection for 5 days. Biochemical methods were used for this investigation. KEY FINDINGS: ADR injection caused elevations in plasma creatine kinase isoenzyme, lactic dehydrogenase, and aminotransferases, iron, ferritin, and transferrin. These changes were associated with increases in lipid peroxidation and protein oxidation as well as decreases in glutathione (GSH) levels and glutathione-S-transferase (GST) activity, while glutathione peroxidase (GSH-Px), and catalase (CAT) activity were elevated in the heart and liver of ADR treated rats. In the MLT+ADR group, the cardiac and hepatic function parameters and the levels of iron, transferrin and ferritin in plasma were normalized to control levels. The rats that were subjected to MLT+ADR had normalized CAT and GSH-Px activity and decreased TBARS and protein carbonyl levels compared the group only treated with ADR. GST activity and GSH concentration in the heart and liver were normalized when MLT accompanied ADR treatment. SIGNIFICANCE: MLT ameliorated oxidative stress by controlling iron, and binding protein levels in ADR treated rats demonstrating the usefulness of adriamycin in cancer chemotherapy and allowing a better management of iron levels.  相似文献   

19.
氯化钠胁迫下嫁接黄瓜叶片SOD和CAT mRNA基因表达及其活性   总被引:1,自引:0,他引:1  
研究了NaCl胁迫下嫁接和自根黄瓜叶片Cu/Zn-SOD、Mn-SOD和CAT mRNA的表达与其酶活性变化及其MDA含量和电解质渗漏率变化.结果表明:在NaCl胁迫条件下,嫁接黄瓜叶片Cu/Zn-SOD mRNA、Mn-SOD mRNA和CAT mRNA的相对表达量均高于自根黄瓜,SOD、Cu/Zn-SOD、Mn-SOD和CAT活性也均高于自根黄瓜,说明与自根黄瓜相比,嫁接黄瓜叶片较高的Cu/Zn-SOD mRNA、Mn-SOD mRNA和CAT mRNA相对表达量是其维持较高Cu/Zn-SOD、Mn-SOD和CAT活性的重要原因;随着NaCl胁迫时间的延长,嫁接和自根黄瓜叶片Cu/Zn-SOD- mRNA、Mn-SOD mRNA和CAT mRNA的相对表达量均呈上升趋势,但其酶活性变化并不完全一致,说明还有其他因素参与相关酶活性的调控;嫁接黄瓜叶片MDA含量和电解质渗漏率均低于自根黄瓜,说明嫁接黄瓜具有较高的活性氧清除系统,可以减少活性氧物质的危害,提高其耐盐性.  相似文献   

20.
Oxidants are toxic, but at low doses they can stimulate rather than inhibit the growth of mammalian cells and play a role in the etiology of cancer and fibrosis. The effect of oxidants on cells is modulated by multiple interacting antioxidant defense systems. We have studied the individual roles and the interaction of Cu,Zn-superoxide dismutase (SOD) and catalase (CAT) in transfectants with human cDNAs of mouse epidermal cells JB6 clone 41. Since only moderate increases in these enzymes are physiologically meaningful, we chose the following five clones for in-depth characterization: CAT 4 and CAT 12 with 2.6-fold and 4.2-fold increased catalase activities, respectively, SOD 15 and SOD 3 with 2.3-fold and 3.6-fold increased Cu,Zn-SOD activities, respectively, and SOCAT 3 with a 3-fold higher catalase activity and 1.7-fold higher Cu,Zn-SOD activity than the parent JB6 clone 41. While the increases in enzyme activities were moderate, the human cDNAs were highly expressed in the transfectants. As demonstrated for the clone SOD 15, this discordance between message concentrations and enzyme activities may be due to the low stability of the human Cu,Zn-SOD mRNA in the mouse recipient cells. According to immunoblots the content of Mn-SOD was unaltered in the transfectants. While the activities of glutathione peroxidase were comparable in all strains, the concentrations of reduced glutathione (GSH) were significantly lower in SOD 3 and SOD 15. This decrease in GSH may reflect a chronic prooxidant state in these Cu,Zn-SOD overproducers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号