首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytomegalovirus infects the majority of humanity which may lead to severe morbidity and mortality in newborns and immunocompromised adults. Humoral and cellular immunity are critical for controlling CMV infection. HCMV envelope glycoprotein complexes (gC I, II, III) represent major antigenic targets of antiviral immune responses. The gCIII complex is comprised of three glycoproteins, gH, gL, and gO. In the present study, DNA vaccines expressing the murine cytomegalovirus homologs of the gH, gL, and gO proteins were evaluated for protection against lethal MCMV infection in the mouse model. The results demonstrated that gH, gL, or gO single gene immunization could not yet offer good protection, whereas co-vaccination strategy apparently showed effects superior to separate immunization. Twice immunization with gH/gL/gO pDNAs could provide mice complete protection against lethal salivary gland-derived MCMV (SG-MCMV) challenge, while thrice immunization with pgH/pgL, pgH/pgO or pgL/pgO could not provide full protection. Co-vaccination with gH, gL and gO pDNAs elicited robust neutralizing antibody and cellular immune responses. Moreover, full protection was also achieved by simply passive immunization with anti-gH/gL/gO sera. These data demonstrated that gCIII complex antigens had fine immunogenicity and might be a promising candidate for the development of HCMV vaccines.  相似文献   

2.
While analyzing human cytomegalovirus (HCMV) gene expression in infected cells by RNA-specific nucleic acid sequence-based amplification (NASBA), positive results were observed for HCMV RNA encoded by several viral genes immediately after the addition of the virus. UV-inactivated virus also gave a positive NASBA result without establishing active infection, suggesting that RNA was associated with the inoculum. Highly purified virions devoid of cellular contamination proved to be positive for viral RNA encoding both immediate-early (UL123) and late (UL65) gene products. Virion-associated RNA might be incorporated specifically or without selection during the virion assembly. In the latter case, cellular RNA would also be present in the virion. A high-abundant cellular RNA encoded by GAPDH and even U1A RNA, which is expressed at low levels, were detected in the virion fraction, whereas cellular DNA was absent. Virion fractionation revealed that cellular RNA was absent in purified de-enveloped capsids. In conclusion, cellular and viral RNA was present between the capsid and envelope of the virion, whereas in the capsid only viral RNA could be detected. The results suggest that virion-associated viral and cellular RNA is incorporated nonspecifically during virion assembly.  相似文献   

3.
In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by the rapid onset of intestinal T-cell depletion that initiates the progression to AIDS. The induction of protective immunity in the intestinal mucosa therefore represents a potentially desirable feature of a preventive AIDS vaccine. In this study, we have evaluated the ability of an enteric adenovirus, recombinant adenovirus 41 (rAd41), to elicit intestinal and systemic immune responses by different immunization routes, alone or in combination with rAd5. rAd41 expressing HIV envelope (Env) protein induced cellular immune responses comparable to those of rAd5-based vectors after either a single intramuscular injection or a DNA prime/rAd boost. Oral priming with rAd41-Env followed by intramuscular boosting with rAd5-Env stimulated a more potent CD8+ T-cell response in the small intestine than the other immunization regimens. Furthermore, the direct injection of rAd41-Env into ileum together with intramuscular rAd5-Env boosting increased Env-specific cellular immunity markedly in mucosal as well as systemic compartments. These data demonstrate that heterologous rAd41 oral or ileal priming with rAd5 intramuscular boosting elicits enhanced intestinal mucosal cellular immunity and that oral or ileal vector delivery for primary immunization facilitates the generation of mucosal immunity.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.  相似文献   

6.
To A  Bai Y  Shen A  Gong H  Umamoto S  Lu S  Liu F 《PloS one》2011,6(4):e17796
Human cytomegalovirus (HCMV) is the largest human herpesvirus and its virion contains many viral encoded proteins found in the capsid, tegument, and envelope. In this study, we carried out a yeast two-hybrid (YTH) analysis to study potential binary interactions among 56 HCMV-encoded virion proteins. We have tested more than 3,500 pairwise combinations for binary interactions in the YTH analysis, and identified 79 potential interactions that involve 37 proteins. Forty five of the 79 interactions were also identified in human cells expressing the viral proteins by co-immunoprecipitation (co-IP) experiments. To our knowledge, 58 of the 79 interactions revealed by YTH analysis, including those 24 that were also identified in co-IP experiments, have not been reported before. Novel potential interactions were found between viral capsid proteins and tegument proteins, between tegument proteins, between tegument proteins and envelope proteins, and between envelope proteins. Furthermore, both the YTH and co-IP experiments have identified 9, 7, and 5 interactions that were involved with UL25, UL24, and UL89, respectively, suggesting that these "hub" proteins may function as the organizing centers for connecting multiple virion proteins in the mature virion and for recruiting other virion proteins during virion maturation and assembly. Our study provides a framework to study potential interactions between HCMV proteins and investigate the roles of protein-protein interactions in HCMV virion formation or maturation process.  相似文献   

7.
Silva MC  Yu QC  Enquist L  Shenk T 《Journal of virology》2003,77(19):10594-10605
The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm.  相似文献   

8.
Cytomegalovirus is a leading cause of morbidity and mortality among neonatal and immunocompromised patients. The use of vaccine prophylaxis continues to be an effective approach to reducing viral infections and their associated diseases. Murine cytomegalovirus (mCMV) has proven to be a valuable animal model in determining the efficacy of newly developed vaccine strategies in vivo. Live recombinant vesicular stomatitis viruses (rVSV) have successfully been used as vaccine vectors for several viruses to induce strong humoral and cellular immunity. We tested the ability of intranasal immunization with an rVSV expressing the major envelope protein of mCMV, glycoprotein B (gB), to protect against challenge with mCMV in a mouse model. rVSV-gB-infected cells showed strong cytoplasmic and cell surface expression of gB, and neutralizing antibodies to gB were present in mice after a single intranasal vaccination of VSV-gB. After challenge with mCMV, recovery of live virus and viral DNA was significantly reduced in immunized mice. In addition, primed splenocytes produced a CD8+ IFNgamma response to gB. The ability to induce an immune response to a gene product through mucosal vaccination with rVSV-gB represents a potentially effective approach to limiting CMV-induced disease.  相似文献   

9.
To investigate cellular components incorporated into the rabies virion, monoclonal antibodies (MAbs) were screened based on their reactivity with additional virion components. Two of the MAbs we prepared recognized a virion-associated 21 kDa polypeptide (referred to as VAP21) from a BHK-21 cell. Since the MAbs precipitated the rabies virion and trypsin digestion eliminated the VAP21 antigen from the virion but alkaline treatment (pH 11) did not, VAP21 seems to be anchored into the viral envelope and exposed on the virion surface. Although quantitative immunoblot analyses indicated an apparently increased concentration of VAP21 in the virion, the ratio of the content of VAP21 to that of viral glycoprotein (G) was several times decreased as compared to the ratio of those in the cell. These data suggest that sorting of VAP21 occurs during the viral budding process on the cell but that it might be inefficient, probably due to a more intimate association of VAP21 with the viral envelope proteins. This assumption seems to be consistent with the results of immunofluorescence studies; that is, VAP21 displayed colocalized distribution with viral envelope antigens in the cell. From these results, it is suggested that VAP21 closely associates with the viral envelope proteins in the cell, and this association might cause passive but relatively efficient incorporation of VAP21 into the virion.  相似文献   

10.
A novel small molecule inhibitor of human cytomegalovirus (HCMV) was identified as the result of screening a chemical library by using a whole-virus infected-cell assay. Synthetic chemistry efforts yielded the analog designated CFI02, a compound whose potency had been increased about 100-fold over an initial inhibitor. The inhibitory concentration of CFI02 in various assays is in the low nanomolar range. CFI02 is a selective and potent inhibitor of HCMV; it has no activity against other CMVs, alphaherpesviruses, or unrelated viruses. Mechanism-of-action studies indicate that CFI02 acts very early in the replication cycle, inhibiting virion envelope fusion with the cell plasma membrane. Mutants resistant to CFI02 have mutations in the abundant virion envelope glycoprotein B that are sufficient to confer resistance. Taken together, the data suggest that CFI02 inhibits glycoprotein B-mediated HCMV virion fusion. Furthermore, CFI02 inhibits the cell-cell spread of HCMV. This is the first study of a potent and selective small molecule inhibitor of CMV fusion and cell-cell spread.  相似文献   

11.
The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.  相似文献   

12.
We documented that the NF-kappaB signaling pathway was rapidly induced following human cytomegalovirus (HCMV) infection of human fibroblasts and that this induced NF-kappaB activity promoted efficient transactivation of the major immediate-early promoter (MIEP). Previously, we showed that the major HCMV envelope glycoproteins, gB and gH, initiated this NF-kappaB signaling event. However, we also hypothesized that there were additional mechanisms utilized by the virus to rapidly upregulate NF-kappaB. In this light, we specifically hypothesized that the HCMV virion contained IkappaBalpha kinase activity, allowing for direct phosphorylation of IkappaBalpha following virion entry into infected cells. In vitro kinase assays performed on purified HCMV virion extract identified bona fide IkappaBalpha kinase activity in the virion. The enzyme responsible for this kinase activity was identified as casein kinase II (CKII), a cellular serine-threonine protein kinase. CKII activity was necessary for efficient transactivation of the MIEP and IE gene expression. CKII is generally considered to be a constitutively active kinase. We suggest that this molecular characteristic of CKII represents the biologic rationale for the viral capture and utilization of this kinase early after infection. The packaging of CKII into the HCMV virion identifies that diverse molecular mechanisms are utilized by HCMV for rapid NF-kappaB activation. We propose that HCMV possesses multiple pathways to increase NF-kappaB activity to ensure that the correct temporal regulation of NF-kappaB occurs following infection and that sufficient threshold levels of NF-kappaB are reached in the diverse array of cells, including monocytes and endothelial cells, infected in vivo.  相似文献   

13.
We previously demonstrated that immunization of mice with plasmid DNAs (pDNAs) expressing the murine cytomegalovirus (MCMV) genes IE1-pp89 and M84 provided synergistic protection against sublethal viral challenge, while immunization with plasmids expressing putative virion proteins provided no or inconsistent protection. In this report, we sought to augment protection by increasing the breadth of the immune response. We identified another MCMV gene (m04 encoding gp34) that provided strong and consistent protection against viral replication in the spleen. We also found that immunization with a DNA pool containing 10 MCMV genes that individually were nonprotective elicited reproducible protection against low to intermediate doses of challenge virus. Moreover, inclusion of these plasmids into a mixture with gp34, pp89, and M84 DNAs provided even greater protection than did coimmunization with pp89 and M84. The highest level of protection was achieved by immunization of mice with the pool of 13 pDNAs, followed by formalin-inactivated MCMV (FI-MCMV). Immunization with FI-MCMV elicited neutralizing antibodies against salivary gland-derived MCMV, and of greatest importance, mice immunized with both the combined pDNA pool and FI-MCMV had undetectable levels of virus in the spleen and salivary glands after challenge. Intracellular cytokine staining of splenocytes from pDNA- and FI-MCMV-immunized mice showed that pDNA immunization elicited high levels of pp89- and M83-specific CD8(+) T cells, whereas both pDNA and FI-MCMV immunizations generated strong CD8(+)-T-cell responses against virion-associated antigens. Taken together, these results show that immunization with pDNA and inactivated virus provides strong antibody and cell-mediated immunity against CMV infection.  相似文献   

14.
Cell surface proteoglycans, in particular those carrying heparan sulfate glycosaminoglycans, play a major role in primary attachment of herpesviruses to target cells. In pseudorabies virus (PrV), glycoprotein gC has been shown to represent the major heparan sulfate-binding virion envelope protein (T. C. Mettenleiter, L. Zsak, F. Zuckermann, N. Sugg, H. Kern, and T. Ben-Porat, J. Virol. 64:278-286, 1990). Since PrV gC is nonessential for viral infectivity in vitro and in vivo, either the interaction between virion envelope and cellular heparan sulfate is not necessary to mediate infection or other virion envelope proteins can substitute as heparan sulfate-binding components in the absence of gC. To answer these questions, we analyzed the infectivity of isogenic gC+ and gC- PrV on mouse L-cell derivatives with defects in glycosaminoglycan biosynthesis, using a rapid and sensitive fluorescence-based beta-galactosidase assay and single-cell counting in a fluorescence-activated cell sorter. Our data show that (i) in the virion, glycoprotein gC represents the only proteoglycan-binding envelope protein, and (ii) cellular proteoglycans are not essential for infectivity of PrV. Attachment studies using radiolabeled virions lacking either gC or the essential gD confirmed these results and demonstrated that PrV gD mainly contributes to binding of Pr virions to cell surface components other than proteoglycans. These data demonstrate the presence of a proteoglycan-independent mode of attachment for Pr virions leading to infectious entry into target cells.  相似文献   

15.
To study the effect of genetic immunization on transgenic expression of hepatitis C virus (HCV) proteins, we evaluated the immunological response of HCV transgenic mice to HCV expression plasmids. FVB/n transgenic mice expressing HCV structural proteins (core, E1, and E2) and wild-type (WT) FVB/n mice were immunized intramuscularly with plasmids expressing core (pHCVcore) or core/E1/E2 (pHCVSt). After immunization, HCV-specific humoral and cellular immune response was studied. Both WT and transgenic mice immunized with either HCV construct produced antibodies and exhibited T-cell proliferative responses against core or envelope. In WT mice immunized with pHCVSt, cytotoxic T-lymphocyte (CTL) activities were detected against E2 but not against core or E1, whereas strong CTL activities against core could be detected in WT mice immunized with pHCVcore. In pHCVSt-immunized, transgenic mice, CTL activities against the core or envelope were completely absent, but core-specific CTL activities could be detected in pHCVcore-immunized transgenic mice. A similar pattern of immune responses was also observed in other mouse strains, including a transgenic line expressing human HLA-A2.1 molecules (AAD mice). Despite the presence of a peripheral cellular immunity against HCV, no liver pathology or lymphocytic infiltrate was observed in these transgenic mice. Our study suggests a hierarchy of CTL response against the HCV structural proteins (E2 > core > E1) in vivo when the proteins are expressed as a polyprotein. The HCV transgenic mice can be induced by DNA immunization to generate anti-HCV antibodies and anticore CTLs. However, they are tolerant at the CTL level against the E2 protein despite DNA immunization.  相似文献   

16.
Protein Kinase and Phosphoproteins of Vesicular Stomatitis Virus   总被引:28,自引:25,他引:3       下载免费PDF全文
Protein kinases of similar but not identical activity were found associated with vesicular stomatitis (VS) virions grown in mouse L cells, primary chicken embryo (CE) cells, and BHK-21 cells, as well as being present in VS virions grown in HeLa and Aedes albopictus cells. The virion kinase preferentially phosphorylated the nucleocapsid NS protein in vitro and to a lesser extent the envelope M protein. Other virion proteins were phosphorylated in vitro only after drastic detergent treatment. Partial evidence that the virion kinase is of cellular origin was obtained by finding reduced enzyme activity in virions released from cells pretreated with actinomycin D and cycloheximide. Selective detergent and detergent-salt fractionation of VS virions revealed that the kinase activity was present in the envelope but not the spikes. The virion kinase activity in a Triton-salt-solubilized envelope fraction could be separated from M and G proteins and partially purified by phosphocellulose column chromatography. Virions released from L, CE, and BHK-21 cells infected in the presence of [(32)P]orthophosphate were labeled almost exclusively in the NS protein. Both soluble and nucleocapsid-associated NS phosphoprotein were present in cytoplasmic extracts of VS viral-infected L cells. The origin and function of the NS phosphoprotein remain to be elucidated.  相似文献   

17.
Enveloped viruses acquire their host‐derived membrane at a variety of intracellular locations. Herpesviruses are complex entities that undergo several budding and fusion events during an infection. All members of this large family are believed to share a similar life cycle. However, they seemingly differ in terms of acquisition of their mature envelope. Herpes simplex virus is often believed to bud into an existing intracellular compartment, while the related cytomegalovirus may acquire its final envelope from a novel virus‐induced assembly compartment. This review focuses on recent advances in the characterization of cellular compartment(s) potentially contributing to herpes virion final envelopment. It also examines the common points between seemingly distinct envelopment pathways and highlights the dynamic nature of intracellular compartments in the context of herpesvirus infections.   相似文献   

18.
The envelope of human cytomegalovirus has been reported to contain between three and eight glycoproteins. Major constituents of the envelope include two abundant glycoproteins with estimated molecular weights of 55,000 (gp55) and 116,000 (gp116). These two glycoproteins have been shown to exist as a disulfide-linked complex (gp55-116) within the envelope of mature virions. Utilizing a panel of monoclonal antibodies reactive with the gp55-116 complex, we characterized the synthesis and processing of these two virion proteins. Infected cells were shown to contain two glycosylated proteins of 160,000 and 150,000 daltons as well as the mature gp55 and gp116. Pulse-chase analysis indicated that gp150 was a precursor protein of gp160. The mature gp55 and gp116 were generated, in turn, by cleavage of gp160. Antigenic and structural analysis revealed that gp55 and gp116 shared little structural homology and no detectable antigenic cross-reactivity. The results of this study are discussed in relation to the synthesis of envelope proteins of other herpesviruses.  相似文献   

19.
A novel type of whole inactivated simian immunodeficiency virus (SIV) virion vaccine immunogen with functional envelope glycoproteins was evaluated, without adjuvant, in rhesus macaques. Immunogens included purified inactivated virions of SIVmac239, a designed mutant of SIVmac239 with gp120 carbohydrate attachment sites deleted (SIVmac239 g4,5), and SIVmneE11S. The vaccines were noninfectious, safe, and immunogenic, inducing antibody responses and cellular responses, including responses by CD8+ lymphocytes. Interpretation of protective efficacy following intrarectal challenge was complicated by incomplete take of the challenge in some SIV na?ve controls.  相似文献   

20.
Krzyzaniak M  Mach M  Britt WJ 《Journal of virology》2007,81(19):10316-10328
The virion envelope of human cytomegalovirus (HCMV) is complex and consists of an incompletely defined number of glycoproteins. The gM/gN protein complex is the most abundant protein component of the envelope. Studies have indicated that deletion of the viral gene encoding either gM or gN is a lethal mutation. Analysis of the amino acid sequence of gM disclosed a C-terminal acidic cluster of amino acids and a tyrosine-containing trafficking motif, both of which are well-described trafficking/sorting signals in the cellular secretory pathway. To investigate the roles of these signals in the trafficking of the gM/gN complex during virus assembly, we made a series of gM (UL100 open reading frame) mutants in the AD169 strain of HCMV. Mutant viruses that lacked the entire C-terminal cytoplasmic tail of gM were not viable, suggesting that the cytoplasmic tail of gM is essential for virus replication. In addition, the gM mutant protein lacking the cytoplasmic domain exhibited decreased protein stability. Mutant viruses with a deletion of the acidic cluster or alanine substitutions in tyrosine-based motifs were viable but exhibited a replication-impaired phenotype suggestive of a defect in virion assembly. Analysis of these mutant gMs using static immunofluorescence and fluorescence recovery after photobleaching demonstrated delayed kinetics of intracellular localization of the gM/gN protein to the virus assembly compartment compared to the wild-type protein. These data suggest an important role of the glycoprotein gM during virus assembly, particularly in the dynamics of gM trafficking during viral-particle assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号