首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The COP9 signalosome is a highly conserved eight-subunit protein complex initially defined as a repressor of photomorphogenic development in Arabidopsis. It has recently been suggested that the COP9 signalosome directly interacts and regulates SCF type E3 ligases, implying a key role in ubiquitin-proteasome mediated protein degradation. We report that Arabidopsis FUS11 gene encodes the subunit 3 of the COP9 signalosome (CSN3). The fus11 mutant is defective in the COP9 signalosome and accumulates significant amount of multi-ubiquitinated proteins. The same mutant is specifically impaired in the 26S proteasome-mediated degradation of HY5 but not PHYA, indicating a selective involvement in protein degradation. Reduction-of-function transgenic lines of CSN3 produced through gene co-suppression also accumulate multi-ubiquitinated proteins and exhibit diverse developmental defects. This result substantiates a hypothesis that the COP9 signalosome is involved in multifaceted developmental processes through regulating proteasome-mediated protein degradation.  相似文献   

2.
The interaction between tobacco mosaic virus (TMV) and tobacco harbouring the N gene is a classical system for studying gene-for-gene interactions in disease resistance. The N gene confers resistance to TMV by mediating defence responses that function to limit viral replication and movement. We isolated the N gene and determined that N belongs to the nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) class of plant disease resistance genes, and encodes both full-length and truncated proteins. Sequence homologies and mutagenesis studies indicated a signalling role for the N protein similar to that seen for proteins involved in defence responses in insects and mammals. The N gene confers resistance to TMV in transgenic tomato, demonstrating the use of the NBS-LRR class of disease resistance genes in engineering crop resistance. From the pathogen side of this interaction, the TMV 126 kDa replicase protein has been implicated as the avirulence factor that triggers N-mediated defence responses. We employed Agrobacterium-mediated expression strategies to demonstrate that expression of the putative helicase region of the replicase protein is sufficient to elicit N-mediated defences. The thermosensitivity of the N-mediated response to TMV is retained when induced by expression of this replicase fragment. Thus, both components of this gene-for-gene interaction are now available for studies that address the molecular mechanisms involved in N-mediated TMV resistance.  相似文献   

3.
The tobacco N gene confers resistance to tobacco mosaic virus (TMV) and encodes a Toll-interleukin-1 receptor/nucleotide binding site/leucine-rich repeat (TIR-NBS-LRR) class protein. We have developed and used a tobacco rattle virus (TRV) based virus induced gene silencing (VIGS) system to investigate the role of tobacco candidate genes in the N-mediated signalling pathway. To accomplish this we generated transgenic Nicotiana benthamiana containing the tobacco N gene. The transgenic lines exhibit hypersensitive response (HR) to TMV and restrict virus spread to the inoculated site. This demonstrates that the tobacco N gene can confer resistance to TMV in heterologous N. benthamiana. We have used this line to study the role of tobacco Rar1-, EDS1-, and NPR1/NIM1- like genes in N-mediated resistance to TMV using a TRV based VIGS approach. Our VIGS analysis suggests that these genes are required for N function. EDS1-like gene requirement for the N function suggests that EDS1 could be a common component of bacterial, fungal and viral resistance signalling mediated by the TIR-NBS-LRR class of resistance proteins. Requirement of Rar1- like gene for N-mediated resistance to TMV and some powdery mildew resistance genes in barley provide the first example of converging points in the disease resistance signalling pathways mediated by TIR-NBS-LRR and CC-NBS-LRR proteins. The TRV based VIGS approach as described here to study N-mediated resistance signalling will be useful for the analysis of not only disease resistance signalling pathways but also of other signalling pathways in genetically intractable plant systems.  相似文献   

4.
5.
BACKGROUND: SCF (Skp1-Cullin-F-box) complexes are a major class of E3 ligases that are required to selectively target substrates for ubiquitin-dependent degradation by the 26S proteasome. Conjugation of the ubiquitin-like protein Nedd8 to the cullin subunit (neddylation) positively regulates activity of SCF complexes, most likely by increasing their affinity for the E2 conjugated to ubiquitin. The Nedd8 conjugation pathway is required in C. elegans embryos for the ubiquitin-mediated degradation of the microtubule-severing protein MEI-1/Katanin at the meiosis-to-mitosis transition. Genetic experiments suggest that this pathway controls the activity of a CUL-3-based E3 ligase. Counteracting the Nedd8 pathway, the COP9/signalosome has been shown to promote deneddylation of the cullin subunit. However, little is known about the role of neddylation and deneddylation for E3 ligase activity in vivo. RESULTS: Here, we identified and characterized the COP9/signalosome in C. elegans and showed that it promotes deneddylation of CUL-3, a critical target of the Nedd8 conjugation pathway. As in other species, the C. elegans signalosome is a macromolecular complex containing at least six subunits that localizes in the nucleus and the cytoplasm. Reducing COP9/signalosome function by RNAi results in a failure to degrade MEI-1, leading to severe defects in microtubule-dependent processes during the first mitotic division. Intriguingly, reducing COP9/signalosome function suppresses a partial defect in the neddylation pathway; this suppression suggests that deneddylation and neddylation antagonize each other. CONCLUSIONS: We conclude that both neddylation and deneddylation of CUL-3 is required for MEI-1 degradation and propose that cycles of CUL-3 neddylation and deneddylation are necessary for its ligase activity in vivo.  相似文献   

6.
The COP9 signalosome is an eight-subunit protein complex that regulates protein ubiquitination and protein turnover in a variety of plant developmental and physiological contexts, including light-regulated development, hormone signaling, and defense against pathogens. In all eukaryotes tested, the COP9 signalosome is able to posttranslationally modify the cullin subunit of E3-ubiquitin-ligase complexes by cleaving off the covalently coupled peptide, Nedd8. Two contrasting models ascribe stimulatory or inhibitory roles to the modification of cullin/E3 that is mediated by the COP9 signalosome. There is considerable disagreement as to whether Nedd8 cleavage underlies all of the COP9 signalosome's numerous cellular and phenotypic effects. This is because macroscopic phenotypes do not always correlate with biochemical defects in COP9 signalosome mutants. Additional biochemical activities, including protein interactions with the cellular machineries for protein phosphorylation, protein turnover, and protein translation, have been proposed to account for the role of the COP9 signalosome in development and disease.  相似文献   

7.
8.
9.
Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins are similar to the nucleotide binding oligomerization domain (NOD) protein family in their domain structure. It has been suggested that most NOD proteins rely on ligand-mediated oligomerization for function, and we have tested this possibility with the N protein of tobacco (Nicotiana tabacum). The N gene for resistance to Tobacco mosaic virus (TMV) is a member of the Toll-interleukin receptor (TIR)-NBS-LRR class of plant disease resistance (R) genes that recognizes the helicase domain from the TMV replicase. Using transient expression followed by immunoprecipitation, we show that the N protein oligomerizes in the presence of the elicitor. The oligomerization was not affected by silencing Nicotiana benthamiana ENHANCED DISEASE SUSCEPTIBILITY1 and N REQUIREMENT GENE1 cofactors of N-mediated resistance, but it was abolished by a mutation in the P-loop motif. However, loss-of-function mutations in the RNBS-A motif and in the TIR domain retain the ability to oligomerize. From these results, we conclude that oligomerization is an early event in the N-mediated resistance to TMV.  相似文献   

10.
Virus-induced gene silencing identified the Avr9/Cf-9 RAPIDLY ELICITED gene ACRE189 as essential for the Cf-9- and Cf-4-mediated hypersensitive response (HR) in Nicotiana benthamiana. We report a role for ACRE189 in disease resistance in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). ACRE189 (herein renamed Avr9/Cf-9-INDUCED F-BOX1 [ACIF1]) encodes an F-box protein with a Leu-rich-repeat domain. ACIF1 is widely conserved and is closely related to F-box proteins regulating plant hormone signaling. Silencing of tobacco ACIF1 suppressed the HR triggered by various elicitors (Avr9, Avr4, AvrPto, Inf1, and the P50 helicase of Tobacco mosaic virus [TMV]). ACIF1 is recruited to SCF complexes (a class of ubiquitin E3 ligases), and the expression of ACIF1 F-box mutants in tobacco compromises the HR similarly to ACIF1 silencing. ACIF1 affects N gene-mediated responses to TMV infection, including lesion formation and salicylic acid accumulation. Loss of ACIF1 function also reduced confluent cell death induced by Pseudomonas syringae pv tabaci. ACIF1 silencing in Cf9 tomato attenuated the Cf-9-dependent HR but not Cf-9 resistance to Cladosporium fulvum. Resistance conferred by the Cf-9 homolog Cf-9B, however, was compromised in ACIF1-silenced tomato. Analysis of public expression profiling data suggests that Arabidopsis thaliana homologs of ACIF1 (VFBs) regulate defense responses via methyl jasmonate- and abscisic acid-responsive genes. Together, these findings support a role of ACIF1/VFBs in plant defense responses.  相似文献   

11.
12.
The COP9 signalosome (CSN) is a complex of eight proteins first identified as a repressor of plant photomorphogenesis. A protein kinase activity associated with the COP9 signalosome has been reported but not identified; we present evidence for inositol 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) as a protein kinase associated with the COP9 signalosome. We have shown that 5/6-kinase exists in a complex with the eight-component COP9 signalosome both when purified from bovine brain and when transfected into HEK 293 cells. 5/6-kinase phosphorylates the same substrates as those of the COP9 signalosome, including IkappaBalpha, p53, and c-Jun but fails to phosphorylate several other substrates, including c-Jun 1-79, which are not substrates for the COP9-associated kinase. Both the COP9 signalosome- associated kinase and 5/6-kinase are inhibited by curcumin. The association of 5/6-kinase with the COP9 signalosome is through an interaction with CSN1, which immunoprecipitates with 5/6-kinase. In addition, the inositol kinase activity of 5/6-kinase is inhibited when in a complex with CSN1. We propose that 5/6-kinase is the previously described COP9 signalosome-associated kinase.  相似文献   

13.
Csn2 (Trip15/Cops2/Alien) encodes the second subunit of the COP9 signalosome (CSN), an eight-subunit heteromeric complex homologous to the lid subcomplex of the 26S proteasome. CSN is a regulator of SCF (Skp1-cullin-F-box protein)ubiquitin ligases, mostly through the enzymatic activity that deconjugates the ubiquitin-like protein Nedd8 from the SCF Cul1 component. In addition, CSN associates with protein kinase activities targeting p53, c-Jun, and IkappaB for phosphorylation. Csn2 also interacts with and regulates a subset of nuclear hormone receptors and is considered a novel corepressor. We report that targeted disruption of Csn2 in mice caused arrest of embryo development at the peri-implantation stage. Csn2(-/-) blastocysts failed to outgrow in culture and exhibited a cell proliferation defect in inner cell mass, accompanied by a slight decrease in Oct4. In addition, lack of Csn2 disrupted the CSN complex and resulted in a drastic increase in cyclin E, supporting a role for CSN in cooperating with the SCF-ubiquitin-proteasome system to regulate protein turnover. Furthermore, Csn2(-/-) embryos contained elevated levels of p53 and p21, which may contribute to premature cell cycle arrest of the mutant.  相似文献   

14.
15.
16.
Feng S  Ma L  Wang X  Xie D  Dinesh-Kumar SP  Wei N  Deng XW 《The Plant cell》2003,15(5):1083-1094
The COP9 signalosome (CSN) is an evolutionarily conserved, nucleus-enriched multiprotein complex. CSN plays roles in photomorphogenesis, auxin response, and floral organ formation, possibly via the regulation of ubiquitin-proteasome-mediated protein degradation. COI1 encodes an F-box protein, which is a subunit of SCF(COI1) E3 ubiquitin ligase, and is required for jasmonate (JA) responses. Here, we demonstrate using coimmunoprecipitation and gel-filtration analyses that endogenous as well as epitope-tagged COI1 forms SCF(COI1) and associates directly with CSN in vivo. Like the coi1-1 mutant, CSN reduction-of-function plants exhibited a JA-insensitive root elongation phenotype and an absence of JA-induced-specific gene expression. Genome expression profile analyses indicated that JA-triggered genome expression is critically dependent on COI1 dosage. More importantly, most of the COI1-dependent JA-responsive genes also required CSN function, and CSN abundance was shown to be important for JA responses. Furthermore, we showed that both COI1 and CSN are essential for modulating the expression of genes in most cellular pathways responsive to JA. Thus, CSN and SCF(COI1) work together to control genome expression and promote JA responses.  相似文献   

17.
The COP9 signalosome is a highly conserved protein complex initially identified as a repressor of photomorphogenesis. Here, we report that subunit 6 of the Arabidopsis COP9 signalosome is encoded by a family of two genes (CSN6A and CSN6B) located on chromosomes V and IV, respectively. The CSN6A and CSN6B proteins share 87% amino acid identity and contain a MPR1p and PAD1p N-terminal (MPN) domain at the N-terminal region. The CSN6 proteins share homology with CSN5 and belong to the Mov34 superfamily of proteins. CSN6 proteins present only in the complex form and coimmunoprecipitate with other known subunits of the COP9 signalosome. Partial loss-of-function strains of the COP9 signalosome created by antisense and cosuppression with CSN6A exhibit diverse developmental defects, including homeotic organ transformation, symmetric body organization, and organ boundary definition. Protein blot analysis revealed that the defective plants accumulate significant amounts of ubiquitinated proteins, supporting the conclusion that the COP9 signalosome regulates multifaceted developmental processes through its involvement in ubiquitin/proteasome-mediated protein degradation.  相似文献   

18.
Serino G  Su H  Peng Z  Tsuge T  Wei N  Gu H  Deng XW 《The Plant cell》2003,15(3):719-731
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that resembles the lid subcomplex of proteasomes. Through its ability to regulate specific proteasome-mediated protein degradation events, CSN controls multiple aspects of development. Here, we report the cloning and characterization of AtCSN2, the last uncharacterized CSN subunit from Arabidopsis. We show that the AtCSN2 gene corresponds to the previously identified FUS12 locus and that AtCSN2 copurifies with CSN, confirming that AtCSN2 is an integral component of CSN. AtCSN2 is not only able to interact with the SCF(TIR1) subunit AtCUL1, which is partially responsible for the regulatory interaction between CSN and SCF(TIR1), but also interacts with AtCUL3, suggesting that CSN is able to regulate the activity of other cullin-based E3 ligases through conserved interactions. Phylogenetic analysis indicated that the duplication and subsequent divergence events that led to the genes that encode CSN and lid subunits occurred before the divergence of unicellular and multicellular eukaryotic organisms and that the CSN subunits were more conserved than the lid subunits during evolution. Comparative analyses of the subunit interaction of CSN revealed a set of conserved subunit contacts and resulted in a model of CSN subunit topology, some aspects of which were substantiated by in vivo cross-link tests.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号