首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An important event in the migration of lymphocytes out of the blood is their adherence to endothelial cells (EC). In inflammatory sites cytokines activate EC and promote lymphocyte EC adherence and migration. Small peritoneal exudate lymphocytes (sPEL) preferentially migrate from the blood to cutaneous delayed-type hypersensitivity reactions and to sites injected with IFN-gamma, IFN-alpha/beta, and TNF-alpha, rather than to peripheral lymph nodes. The basis of this migration is sPEL adherence to cytokine-activated EC. To study this adhesion mAb to rat sPEL were screened for inhibition of sPEL adherence to IFN-gamma-stimulated EC. One mAb, TA-2, inhibited IFN-gamma-stimulated adherence to EC by 60%. This antibody had no effect on the baseline adherence of sPEL to unstimulated EC. Treatment of sPEL, but not EC, with TA-2-inhibited adhesion. TA-2 also inhibited adhesion to EC activated with mIL-1 alpha, TNF-alpha, and LPS, and the adhesion of spleen T cells to activated EC. The TA-2 Ag was expressed on virtually all lymph node, spleen, and sPEL lymphocytes but sPEL expressed two to three times higher levels than lymph node lymphocytes, and the highest levels were found on CD4+ and CD45R- memory T cells. TA-2 immunoprecipitated a group of four polypeptides with molecular mass of 150, 130, 83, and 66 kDa. Finally, TA-2 inhibited sPEL adhesion to TNF-alpha and IL-1 stimulated human umbilical vein EC to the same extent as an anti-human VCAM-1 mAb, and combinations of TA-2 and anti-VCAM-1 were not different from treatment with either antibody alone. Thus, TA-2 appears to recognize rat VLA-4 based on immunoprecipitation, immunofluorescence, and lymphocyte EC studies. VLA-4 mediates the adhesion of rat lymphocytes to rat microvascular EC stimulated with IFN-gamma, mIL-1 alpha, TNF-alpha, and LPS. VLA-4 is important in the increased adhesion of sPEL to EC and the enhanced sPEL migration to inflammation may in part be explained by increased expression of VLA-4 on these cells.  相似文献   

2.
Lymphocyte function-associated Ag-1 (LFA-1) or CD11a/CD18 mediates lymphocyte adhesion to cultured vascular endothelial cells (EC). Thus, LFA-1 likely plays a major role in lymphocyte migration out of the blood, but there is little information on this in vivo. Small peritoneal exudate lymphocytes (sPEL) and lymph node (LN) lymphoblasts adhere to cytokine-activated EC and preferentially migrate to cutaneous inflammatory sites. The role of LFA-1 in the adherence and in vivo migration of these T cells was determined. Because of a lack of anti-rat LFA-1, mAb were prepared to rat T cells. One mAb, TA-3, inhibited homotypic aggregation; T cell proliferation to Ag, alloantigens, and mitogens; stained all leukocytes; and immunoprecipitated 170- and 95-kDa polypeptides from lymphocytes and neutrophils. TA-3 binding to lymphocytes also required Ca2+, but not Mg2+. Thus, TA-3 appears to react with rat LFA-1. TA-3 inhibited spleen T cell adhesion to unstimulated EC by 30% and to IFN-gamma, TNF-alpha, IL-1 alpha, and LPS stimulated EC by 50 to 60% but inhibited sPEL EC adhesion by only 10%. TA-3 also strongly inhibited anti-CD3-stimulated LN T cell adherence. The migration of spleen T cells to delayed-type hypersensitivity and skin sites injected with LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF was inhibited by 72 to 88% by TA-3, and was decreased by 50% to peripheral LN. TA-3 caused less but still 50 to 60% inhibition of sPEL migration to inflamed skin. Lymphoblast migration to skin was inhibited 40 to 80% and to PLN by 30%. Migration of lymphocytes from all sources to mesenteric LN was inhibited by 32 to 60%. In conclusion, LFA-1 mediates much of the adherence of spleen T cells and lymphoblasts to EC in vitro, most of the migration of these cells to dermal inflammation and about 50% of the homing of LN and spleen T cells to peripheral and mesenteric LN. sPEL are less dependent on LFA-1 for adhesion to EC in vitro and for migration to inflamed skin and LN in vivo.  相似文献   

3.
The adhesion receptors, LFA-1 and VLA-4, on lymphocytes mediate lymphocyte adherence to cytokine-activated endothelial cells (EC) in vitro. Based on our previous data, which suggested that the mAb TA-2 reacted with rat VLA-4, the effect of TA-2 on lymphocyte migration out of the blood was examined. Small peritoneal exudate lymphocytes (sPEL) preferentially migrate to cutaneous inflammatory reactions, whereas lymphocytes from peripheral lymph nodes (PLN) migrate poorly to inflammatory sites but home avidly to PLN. Treatment of sPEL with TA-2 inhibited sPEL migration to DTH, LPS, poly I:C, IFN-gamma, IFN-alpha/beta, and TNF-alpha by 35 to 65% and their accumulation in PLN by 50%. The homing of PLN lymphocytes to PLN was not inhibited by TA-2. Spleen T cell migration to cutaneous inflammatory sites was inhibited but homing to PLN was not affected. Systemic treatment with TA-2 inhibited sPEL migration to inflamed or cytokine-injected skin by up to 70%. Similarly, TA-2 strongly inhibited the migration of Ag-stimulated PLN lymphoblasts to skin and to PLN. The migration of lymphocytes from all sources, including the peritoneum, spleen, PLN, mesenteric nodes, and Peyer's patches, to mesenteric lymph nodes and Peyer's patches was inhibited by 80% and 95%, respectively. In conclusion, our results suggest that VLA-4 and possibly other alpha 4 integrins mediate the migration of the inflammation-seeking sPEL and Ag-activated lymphoblasts to cutaneous inflammatory sites and lymph nodes but do not affect the homing of PLN lymphocytes to PLN. These integrins also appear to be necessary for the migration of all types of lymphocytes to Peyer's patches and mesenteric lymph nodes.  相似文献   

4.
Lymphocytes from antigen-stimulated lymph nodes avidly migrate from the blood to cutaneous sites of inflammation such as DTH reactions or contact sensitivity. One of the initial steps in this migration is the adhesion of the lymphocyte to endothelial cells (EC); therefore, the adhesion of lymphocytes from antigen-stimulated lymph nodes to microvascular EC in the rat was examined. Two to five days after subcutaneous immunization with antigen, lymphocytes that adhered to unstimulated and IFN-gamma-, TNF-alpha-, IL-1 alpha-, and LPS-treated EC were increased in the regional lymph nodes. The enhanced adhesion was attributable to low-density lymphoblast-enriched lymph node cells while small high-density lymphocytes displayed little or no increase in their adhesion. Lymphoblast adhesion required the stimulation of the EC with 10 times the concentrations of IFN-gamma and TNF-alpha required for peritoneal exudate lymphocyte adhesion. There was a synergistic increase in the adhesion of the low-density lymphocytes to EC stimulated with combinations of IFN-gamma and TNF-alpha. Antibody to VLA-4 inhibited about 40% of the stimulated adhesion to EC treated with IFN-gamma, TNF-alpha, or LPS. In vivo anti-VLA-4 inhibited lymphoblast migration to IFN-gamma, TNF-alpha, LPS, and DTH reactions by 60%. Thus antigen stimulates the generation of low-density lymphoblasts that have an enhanced adherence to cytokine- and LPS-treated EC through a partially VLA-4-dependent mechanism and the migration of these cells to cutaneous inflammatory reactions is dependent upon VLA-4.  相似文献   

5.
Since several studies have demonstrated that lipopolysaccharide (LPS), tumor necrosis factor (TNF), and interleukin-1 (IL-1) enhanced lymphocyte binding to endothelial cells in vitro, we examined the effects of these agents on lymphocyte migration in vivo. Small peritoneal exudate lymphocytes (sPEL), which perferentially migrate into inflammatory sites, were radiolabeled with 111In and injected iv into rats. The id injection of LPS was a strong stimulus for the migration of these cells into the skin. TNF alpha was also a good stimulator of lymphocyte migration, while TNF beta and IL-1 alpha were weak or nearly inactive. Kinetic analysis demonstrated that migration to TNF was rapid, with a peak at 6 hr, followed by a steady decline, while migration to LPS was sustained for 24 hr. TNF alpha, TNF beta, and IL-1 alpha, when combined with interferon-gamma (IFN-gamma) or IFN-alpha/beta produced striking synergistic increases in lymphocyte migration. Combinations of the TNFs and IL-1 had less than additive effects, as did combinations of the IFNs. Qualitatively similar migration responses were found when spleen T cells instead of sPEL were studied.  相似文献   

6.
Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma   总被引:23,自引:0,他引:23  
Lymphocytes are recruited out of the blood into delayed-type hypersensitivity (DTH) reactions, but the factors controlling their migration are poorly understood. Our previous studies have shown that IFN-alpha/beta, its inducers, and T cell lymphokines can induce lymphocyte migration into the skin after intradermal injection. The present studies were designed to determine the effect of rIFN-gamma, IL-1, and anti-IFN-gamma on lymphocyte recruitment into DTH. Small peritoneal exudate lymphocytes, which preferentially migrate to inflammatory sites, were labelled with 111In and injected i.v. into rats. The intradermal injection of IFN-gamma stimulated the migration of these lymphocytes into the skin. IL-1 induced very little migration by itself, but enhanced the effect of IFN-gamma. Kinetic analysis demonstrated that the migration of lymphocytes to IFN-gamma was rapid, with a peak at 6 h, whereas migration into a DTH reaction was minimal for the first 8 h and reached a peak 24 h after intradermal injection. Polyclonal rabbit anti-IFN-gamma anti-serum, and a Mab to IFN-gamma, DB-2, could almost completely block lymphocyte migration induced by IFN-gamma. Furthermore, DB-2 inhibited lymphocyte recruitment into DTH reactions by 50 to 90%. This Mab did not affect migration in response to IFN-alpha/beta, although it partially inhibited the response to polyI:C. The effect of IFN-gamma on lymphocyte recruitment was not specific for small peritoneal exudate lymphocytes, because both spleen T cells and lymph node cells migrated in response to IFN-gamma and DB-2 inhibited the recruitment of splenic T cells to DTH. Thus, IFN-gamma is a potent stimulator of lymphocyte migration into the skin and a major mediator of lymphocyte recruitment into DTH.  相似文献   

7.
Adhesion of lymphocytes to endothelial cells (EC) is the requisite first element in the multistep process of transmigration from blood across the postcapillary venules. Selective expression of cell adhesion molecules (CM) by microvascular EC in lymphoid organs (e.g., lymph nodes) and during tissue inflammation modulates this traffic in a site-directed manner. CAM synthesis by EC is regulated in turn by cytokines released in the local microenvironment. Studies done largely with human umbilical vein EC have implicated IL-1, IFN-gamma, and TNF-alpha as cytokines which promote leukocyte adhesion to EC. In the work reported here, the responses of cultured microvascular EC derived from macaque lymph nodes to IL-1beta, IL-2, IFN-gamma, and IL-4 were examined. Increases in lymphocyte adhesion after preculture of microvascular EC in IL-1beta or IFN-gamma were typically 2-to 4-fold above controls and comparable to those reported for human umbilical vein EC. IL-2 had no effect. In contrast, IL-4 markedly enhanced adhesion to microvascular EC. IL-4-induced adhesion was observed as early as 4 h after induction, plateaued by 24 h, was stable through 72 h of culture, but decayed to basal levels within 72 h after removal of IL-4 from the cultures. IL-1beta, but not IL-2 or IFN-gamma, synergistically enhanced the action of IL-4 on cultured microvascular EC to promote lymphocyte binding. Adhesion triggered in this manner required de novo protein synthesis. However, the avidity of IL-4-activated microvascular EC for lymphocytes, and analyses of kinetics, cation and temperature dependence, and/or lack of blockade with mAb to endothelial leukocyte adhesion molecule-1, intra-cellular adhesion molecule-1, and MECA-79 indicated that these CAM were not central to the phenomenon. To aid identification of the relevant CAM, mAb specific to IL-4-induced microvascular EC were produced. One of these, 6G10, blocked up to 90% of lymphocyte adhesion to IL-4-induced microvascular EC, immunoprecipitated an IL-4-induced cell-surface molecule of 110-kDa molecular mass, and reacted specifically with Chinese hamster ovary cells transfected with human vascular cell adhesion molecule-1. Our results suggest that IL-4 may have potent effects on lymphocyte recirculation in vivo.  相似文献   

8.
Monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein of 10 kDa (IP-10) are related members of the CXC chemokine subfamily that bind to a common receptor, CXCR3, and that are produced by different cell types in response to IFN-gamma. We have recently reported that human polymorphonuclear neutrophils (PMN) have the capacity to release IP-10. Herein, we show that PMN also have the ability to produce MIG and to express I-TAC mRNA in response to IFN-gamma in combination with either TNF-alpha or LPS. While IFN-gamma, alone or in association with agonists such as fMLP, IL-8, granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF, failed to influence MIG, IP-10, and I-TAC gene expression, IFN-alpha, in combination with TNF-alpha, LPS, or IL-1beta, resulted in a considerable induction of IP-10 release by neutrophils. Furthermore, IL-10 and IL-4 significantly suppressed the expression of MIG, IP-10, and I-TAC mRNA and the extracellular production of MIG and IP-10 in neutrophils stimulated with IFN-gamma plus either LPS or TNF-alpha. Finally, supernatants harvested from stimulated PMN induced migration and rapid integrin-dependent adhesion of CXCR3-expressing lymphocytes; these activities were significantly reduced by neutralizing anti-MIG and anti-IP-10 Abs, suggesting that they were mediated by MIG and IP-10 present in the supernatants. Since MIG, IP-10, and I-TAC are potent chemoattractants for NK cells and Th1 lymphocytes, the ability of neutrophils to produce these chemokines might contribute not only to the progression and evolution of the inflammatory response, but also to the regulation of the immune response.  相似文献   

9.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

10.
We previously demonstrated that IL-2 promotes the adhesion of NK cells to endothelial cells (EC) and that EC are readily lysed by lymphokine-activated killer (LAK) cells in vitro, suggesting that cell mediated endothelial injury may contribute to the capillary leak syndrome observed in patients treated with IL-2. In this investigation, we sought to determine the effects of EC activation on the in vitro susceptibility of EC to LAK cell-mediated cytolysis. Despite increased binding of CD16+ lymphocytes to TNF-activated EC monolayers, prior exposure of EC to any of several IL-2-inducible cytokines including TNF-alpha, IL-1 beta, and IFN-gamma not only failed to render the EC more vulnerable to cytolysis but increased their resistance to LAK cells in 111Indium release cytolysis assays. This decrement in susceptibility to cytolysis resulting from prior exposure to cytokines preceded any detectable increase in HLA class I or II Ag expression. In cold target competition experiments with LAK cell effectors and radiolabeled K562 target cells, TNF-primed EC were no more competitive than unstimulated EC, and in assays with unstimulated PBMC effectors, the addition of unlabeled TNF-activated EC actually increased the cytolysis of the radiolabeled tumor cells. The effects of various cytokines and lymphocyte preparations on EC permeability were also evaluated. In these experiments, saphenous vein EC were cultured on porous filter disks, exposed to cytokines or lymphocytes, and the diffusion of 125I-BSA through the filters was then measured. Exposure to IL-2, IFN-gamma, or TNF-alpha did not increase the diffusion of the BSA through the EC-coated filters, whereas LAK cells markedly increased their permeability. Consistent with the results of the cytolysis assays, pretreatment of the EC with TNF, IL-1, or IFN-gamma diminished the LAK cell-induced increase in BSA diffusion. These results suggest that although circulating IL-2-inducible cytokines such as TNF and IFN-gamma may activate EC in vivo and contribute to lymphocyte margination and lymphopenia, they may not be directly responsible for the IL-2-induced capillary leak syndrome and may actually protect EC from LAK cell-mediated injury.  相似文献   

11.
The CD69 glycoprotein is an early activation antigen of T and B lymphocytes but it expression is induced in vitro on cells of most hematopoietic lineages, including neutrophils after stimulation with PMA or fMLP. In this study, we investigated whether CD69 expression on human neutrophils could be modulated by inflammatory or anti-inflammatory cytokines (IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, G-CSF, GM-CSF, TNF-alpha, TGF-beta, IFN-alpha, IFN-gamma). Resting neutrophils from healthy subjects did not express CD69 on the cell surface; moreover, a preformed intracellular pool of CD69 was not evident in these cells. CD69 was barely detectable on these cells after overnight incubation in medium while overnight incubation with GM-CSF, IFN-gamma or IFN-alpha significantly induced CD69 expression on neutrophils with GM-CSF appearing to be the most potent inducer. This induction was dependent on a new protein synthesis as it was significantly inhibited by cycloheximide (about 50% inhibition). CD69 cross-linking on GM-CSF-primed neutrophils sinergized with LPS and increased TNF-alpha production and secretion suggesting a role for CD69-positive neutrophils in the pathogenesis and maintenance of different inflammatory diseases.  相似文献   

12.
Astrocytes have the capacity to secrete or respond to a variety of cytokines including IL-1, IL-6, IL-3, and TNF-alpha. In this study, we have examined the capacity of astrocytes to secrete TNF-alpha in response to a variety of biologic stimuli, particularly cytokines such as IL-1 and IFN-gamma, which are known to be present in the central nervous system during neurologic diseases associated with inflammation. Rat astrocytes do not constitutively produce TNF-alpha, but have the ability to secrete TNF-alpha in response to LPS, and can be primed by IFN-gamma to respond to a suboptimal dose of LPS. IFN-gamma and IL-1 beta alone do not induce TNF-alpha production, however, the combined treatment of IFN-gamma and IL-1 beta results in a striking synergistic effect on astrocyte TNF-alpha production. Astrocyte TNF-alpha protein production induced by a combined treatment of either IFN-gamma/LPS or IFN-gamma/IL-1 beta occurs in a dose- and time-dependent manner, and appears to require a "priming signal" initiated by IFN-gamma, which then renders the astrocyte responsive to either a suboptimal dose of LPS or IL-1 beta. Astrocyte TNF-alpha production by IFN-gamma/LPS stimulation can be inhibited by the addition of anti-rat IFN-gamma antibody, whereas IFN-gamma/IL-1-induced TNF-alpha production is inhibited by antibody to either IFN-gamma or IL-1 beta. Polyclonal antisera reactive with mouse macrophage-derived TNF-alpha neutralized the cytotoxicity of IFN-gamma/LPS and IFN-gamma/IL-1 beta-induced astrocyte TNF-alpha, demonstrating similarities between these two sources of TNF-alpha. We propose that astrocyte-produced TNF-alpha may have a pivotal role in augmenting intracerebral immune responses and inflammatory demyelination due to its diverse functional effects on glial cells such as oligodendrocytes and astrocytes themselves.  相似文献   

13.
The capacity of 12 cytokines to induce NO2- or H2O2 release from murine peritoneal macrophages was tested by using resident macrophages, or macrophages elicited with periodate, casein, or thioglycollate broth. Elevated H2O2 release in response to PMA was observed in resident macrophages after a 48-h incubation with IFN-gamma, TNF-alpha, TNF-beta, or CSF-GM. Of these, only IFN-gamma induced substantial NO2- secretion during the culture period. The cytokines inactive in both assays under the conditions tested were IL-1 beta, IL-2, IL-3, IL-4, IFN-alpha, IFN-beta, CSF-M, and transforming growth factor-beta 1. Incubation of macrophages with IFN-gamma for 48 h in the presence of LPS inhibited H2O2 production but augmented NO2- release, whereas incubation in the presence of the arginine analog NG-monomethylarginine inhibited NO2- release but not H2O2 production. Although neither TNF-alpha nor TNF-beta induced NO2- synthesis on its own, addition of either cytokine together with IFN-gamma increased macrophage NO2- production up to six-fold over that in macrophages treated with IFN-gamma alone. Moreover, IFN-alpha or IFN-beta in combination with LPS could also induce NO2- production in macrophages, as was previously reported for IFN-gamma plus LPS. These data suggest that: 1) tested as a sole agent, IFN-gamma was the only one of the 12 cytokines capable of inducing both NO2- and H2O2 release; 2) the pathways leading to secretion of H2O2 and NO2- are independent; 3) either IFN-gamma and TNF-alpha/beta or IFN-alpha/beta/gamma and LPS can interact synergistically to induce NO2- release.  相似文献   

14.
T lymphocyte infiltration into inflamed tissues is thought to involve lymphocyte rolling on vascular endothelial cells. Because both selectin and alpha(4) integrin adhesion molecules can mediate leukocyte rolling, the contribution of these receptors to lymphocyte migration to inflammation was examined. The recruitment of (111)In-labeled spleen T cells to intradermal sites injected with IFN-gamma, TNF-alpha, LPS, poly inosine-cytosine, and Con A was measured in the rat, and the effect of blocking mAbs to E-selectin, P-selectin, very late activation Ag-4 (VLA-4), and LFA-1 was determined on this T cell migration in vivo. Anti-E-selectin and anti-P-selectin mAbs each inhibited 10-40 and 20-48%, respectively, of the T lymphocyte migration to the inflammatory sites, depending on the stimulus. Blocking VLA-4 inhibited 50% of the migration to all of the lesions except Con A. Treatment with both anti-VLA-4 and anti-E-selectin mAbs inhibited up to 85% of the lymphocyte accumulation, while P-selectin and VLA-4 blockade in combination was not more effective than VLA-4 blockade alone in TNF-alpha, IFN-gamma, LPS, and poly inosine-cytosine lesions. Inhibiting E-selectin, P-selectin, and VLA-4 together nearly abolished lymphocyte migration to all inflammatory sites. Anti-LFA-1 mAb strongly inhibited lymphocyte accumulation by itself, and this inhibition was not significantly further reduced by E- or P-selectin blockade. Thus, T cell migration to dermal inflammation is dependent on E-selectin, P-selectin, and VLA-4, likely because these three receptors are required for rolling of memory T lymphocytes, but VLA-4 and E-selectin are especially important for lymphocyte infiltration in these tissues.  相似文献   

15.
Tumour necrosis factor alpha (TNF-alpha) and interleukin 4 (IL-4) selectively synergise in inducing expression of the mononuclear cell adhesion receptor VCAM-1 (vascular cell adhesion molecule-1) on human umbilical vein endothelial cells (HUVEC), which results in increased adhesiveness of HUVEC for T lymphocytes. This process may be crucial for adherence of circulating lymphocytes prior to their passage from the blood into inflammatory tissues. IL-4 also amplifies production of interleukin 6 (IL-6) and monocyte chemotactic protein-(MCP-1) from TNF-alpha-activated HUVEC. In the present study we demonstrate that IL-4 enhances production of granulocyte-macrophage colony-stimulating factor (GM-CSF) from TNF-alpha-stimulated HUVEC. Moreover, using cultured adult saphenous vein and umbilical artery endothelial cells, we show identical effects of IL-4 on TNF-alpha-induced responses to those observed with endothelial cells of foetal origin. Additionally, we report here that TNF-alpha and interferon gamma (IFN-gamma) synergise in the induction of both the lymphocyte adhesion receptor VCAM-1, and the TNF-alpha-inducible neutrophil adhesion receptor intercellular adhesion molecule-1, on all three endothelial cell types studied. In contrast, we found that GM-CSF secretion by endothelial cells treated with IFN-gamma plus TNF-alpha was markedly decreased when compared to the response induced by TNF-alpha alone. These results suggest that the combined actions of several cytokines, acting sequentially or in concert, may exert differential effects on activation and accumulation of circulating lymphocytes at sites of inflammation.  相似文献   

16.
The adhesion of lymphocytes to vascular endothelium is the first step in their passage from the blood into inflammatory tissues. By modulating endothelial cell (EC) adhesiveness for lymphocytes, cytokines may regulate lymphocyte accumulation and hence the nature and progression of inflammatory responses. IL-1, TNF, IFN-gamma, and IL-4 each increase EC adhesiveness for T cells when used alone in adhesion assays in vitro. As cytokines are more likely to act in combination at sites of inflammation in vivo, we have studied the stimulating effect of different combinations of cytokines on EC adhesiveness for T cells and polymorphonuclear leukocytes (PMN). Acting alone IL-1, TNF, IFN-gamma, and IL-4 each significantly enhanced EC adhesiveness for T cells (p less than 0.005), whereas only IL-1 (p less than 0.005) and TNF (p less than 0.005) but not IFN-gamma or IL-4 significantly enhanced adhesiveness for PMN. When EC were stimulated with optimal concentrations of TNF in combination with IL-4 or IFN-gamma, there was a significant further increase in adhesiveness for T cells (p less than 0.003), but not PMN, over that seen with TNF alone. The additive effect of TNF and IL-4 was more marked than that of TNF and IFN-gamma. Although approximately equal proportions of T cells and PMN bound to TNF-stimulated EC, nearly double the proportion of T cells compared with PMN bound EC preincubated with TNF and IL-4 together. A similar interaction with IL-4 or IFN-gamma was exhibited by lymphotoxin. mAb-inhibition studies indicated that the extra increase in binding caused by stimulating EC with TNF and IL-4 in combination was mediated by VCAM-1 whereas that caused by stimulating with TNF and IFN-gamma in combination was substantially mediated through leukocyte function-associated Ag-1- and VCAM-1-independent mechanisms. These observations suggest that whereas IL-1 and TNF alone are unselective in terms of leukocyte adhesion to EC, the combination of TNF (or LT) with IL-4 or IFN-gamma may be of key importance in determining the recruitment of a lymphocyte-predominant infiltrate in immune mediated inflammation, and in initiating the transition from acute to chronic inflammation.  相似文献   

17.
During inflammation and recirculation, lymphocytes migrate into tissues by traversing the capillary endothelium, a process known as extravasation. After crossing the endothelial cells, lymphocytes come into contact with the basement membrane, which is a specialized layer of extracellular matrix containing predominantly laminin, collagen type IV, entactin, and heparan sulfate proteoglycans. In tissue invasion by inflammatory cells and metastatic tumor cells, the basement membrane serves as a substratum for cell adhesion and migration. However, the role of basement membrane in lymphocyte extravasation remains unclear. In this study, we investigated the effect of basement membrane on lymphocyte adhesion, migration, and proliferation, using matrigel as a model for basement membrane. We observed that matrigel promotes both lymphocyte adhesion and migration, with entactin primarily responsible for promoting adhesion and laminin for promoting migration. In addition, activation of lymphocytes by anti-CD3 enhances their adhesion and migration on matrigel-coated substratum. We also observed that matrigel inhibits the proliferation of lymphocytes stimulated by Con A. Furthermore, we demonstrated that laminin is the matrigel component responsible for inhibiting lymphocyte proliferation. However, matrigel has no effect on the proliferation of lymphocytes stimulated by LPS. These results suggest that matrigel has different effects on lymphocyte subpopulations. In agreement with the results on proliferation, matrigel also inhibits the production of IL-2 by Con A-stimulated lymphocytes.  相似文献   

18.
19.
Activation of T cells by Ag or stimulation of monocytes with inflammatory cytokines induces CD44 to bind to hyaluronan (HA), an adhesion event implicated in leukocyte-leukocyte, leukocyte-endothelial cell, and leukocyte-stromal cell interactions. We have previously shown that TNF-alpha induces CD44 sulfation in a leukemic cell line, which correlated with the induction of HA binding and CD44-mediated adhesion. In this study, we establish that TNF-alpha and IFN-gamma induce HA binding and the sulfation of CD44 in CD14(+) PBMC, whereas no induced HA binding or CD44 sulfation was observed in CD14(-) PBMC stimulated with TNF-alpha. Treatment of cells with NaClO(3), an inhibitor of sulfation, prevented HA binding in a significant percentage of CD14(+) PBMC induced by TNF-alpha, LPS, IL-1beta, or IFN-gamma. Furthermore, stimulation with TNF-alpha or IFN-gamma in the presence of NaClO(3) reduced the ability of isolated CD44H to bind HA, demonstrating a direct effect of CD44H sulfation on HA binding. In contrast, the transient induction of HA binding in T cells by PHA was not affected by NaClO(3), suggesting that activated T cells do not use sulfation as a mechanism to regulate HA binding. Overall, these results demonstrate that inducible sulfation of CD44H is one mechanism used by CD14(+) peripheral blood monocytes to induce HA binding in response to inflammatory agents such as TNF-alpha and IFN-gamma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号