首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Factor-Xa assembly into the prothrombinase complex decreases its availability for inhibition by antithrombin + unfractionated heparin (AT + UFH). We have developed a novel covalent antithrombin-heparin complex (ATH), with enhanced anticoagulant actions compared with AT + UFH. The present study was performed to extend understanding of the anticoagulant mechanisms of ATH by determining its inhibition of Xa within the critical prothrombinase. Discontinuous inhibition assays were performed to determine final k(2) values for inhibition of Xa. Fluorescent microscopy was conducted to evaluate inhibitor-prothrombinase interactions. The k(2) for inhibition of prothrombinase versus free Xa by AT + UFH was lower, whereas for ATH were much higher. Relative to intact prothrombinase, rates for Xa inhibition by AT + UFH in complexes devoid of prothrombin/vesicles/factor-Va were higher. For ATH, exclusion of prothrombin decreased k(2), removal of vesicles increased k(2) and exclusion of factor-Va gave no effect. While UFH may displace Xa from prothrombinase, Xa is detained within prothrombinase during ATH reactions. We confirm prothrombinase hinders inhibitory action of AT + UFH, whereas ATH is less affected with prothrombin being a key component in the complex responsible for the opposing effects. Overall, the results suggest that covalent linkage between AT-heparin assists access and neutralization of complexed Xa, with concomitant inhibition of prothrombinase function compared with conventional non-conjugated heparin.  相似文献   

2.
The protease α-thrombin is a key enzyme of the coagulation process as it is at the cross-roads of both the pro- and anti-coagulant pathways. The main source of α-thrombin in vivo is the activation of prothrombin by the prothrombinase complex assembled on either an activated cell membrane or cell fragment, the most relevant of which is the activated platelet surface. When prothrombinase is assembled on synthetic phospholipid vesicles, prothrombin activation proceeds with an initial cleavage at Arg-320 yielding the catalytically active, yet effectively anticoagulant intermediate meizothrombin, which is released from the enzyme complex ∼30–40% of the time. Prothrombinase assembled on the surface of activated platelets has been shown to proceed through the inactive intermediate prethrombin-2 via an initial cleavage at Arg-271 followed by cleavage at Arg-320. The current work tests whether or not platelet-associated prothrombinase proceeds via a concerted mechanism through a study of prothrombinase assembly and function on collagen-adhered, thrombin-activated, washed human platelets in a flow chamber. Prothrombinase assembly was demonstrated through visualization of bound factor Xa by confocal microscopy using a fluorophore-labeled anti-factor Xa antibody, which demonstrated the presence of distinct platelet subpopulations capable of binding factor Xa. When prothrombin activation was monitored at a typical venous shear rate over preassembled platelet-associated prothrombinase neither potential intermediate, meizothrombin or prethrombin-2, was observed in the effluent. Collectively, these findings suggest that platelet-associated prothrombinase activates prothrombin via an efficient concerted mechanism in which neither intermediate is released.  相似文献   

3.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

4.
Annexin V is a calcium-dependent phospholipid-binding protein that exhibits anticoagulant activity on binding to phosphatidylserine exposed on the activated surfaces of endothelial cells and platelets, inhibiting activation of factor X and prothrombin in the blood coagulation cascade. Sulfatide (galactosylceramide I(3)-sulfate), one of the glycosphingolipids of the platelet cell membrane, is thought to be involved in blood coagulation systems via activation of factor XII. In this study, we examined whether or not annexin V binds to sulfatide and affects the coagulant activity of sulfatide. Solid phase assaying of annexin V revealed that it binds specifically to sulfatide, i.e. not to galactosylceramide or gangliosides, in the presence of calcium ions. Affinity analysis by means of surface plasmon resonance showed that the K(D) of the interaction between annexin V and sulfatide is 1.2 micro M. Kinetic turbidometric assaying of plasma coagulation initiated by CaCl(2) revealed that the coagulation rate in the presence of sulfatide or phosphatidylserine was decreased by annexin V. These results suggest that annexin V regulates coagulability in the blood stream by binding not only to phosphatidylserine but also to sulfatide.  相似文献   

5.
Membrane-mediated assembly of the prothrombinase complex   总被引:1,自引:0,他引:1  
Prothrombinase assembly was studied on macroscopic planar bilayers consisting of 20% dioleoyl-phosphatidylserine (DOPS) and 80% dioleoyl-phosphatidylcholine (DOPC). The dissociation constant for the binding of factor Xa to the bilayer, measured by ellipsometry, was Kd = 47 +/- 8 nM (mean +/- S.D.) and this value was lowered to Kd = 2.2 +/- 0.3 pM by preadsorption of factor Va. This latter value was determined from direct measurement of steady-state thrombin production. A comparable value of Kd = 1.0 +/- 0.1 pM was found by repeating these experiments in suspensions of phospholipid vesicles, and it was verified that prothrombinase assembly was not influenced by the addition of prothrombin. Using a minute amount (0.094 fmol cm-2) of preadsorbed factor Va, it was found that the rate of prothrombinase assembly exceeds the rate of collisions between Xa molecules from the buffer and the sparse Va molecules on the bilayer. Apparently, factor Xa adsorbs first to the membrane and then associates rapidly with factor Va by lateral diffusion. The data indicate almost instantaneous equilibrium of this complex formation on the surface with a lower limit for the bimolecular rate constant of kon = 2.8 x 10(13) (mol/cm2)-1 s-1. In suspensions of small phospholipid vesicles, prothrombinase assembly is collisionally limited and the value of kon should be proportional to vesicle diameter. This was verified with a method for estimation of kon values from thrombin generation curves. Values of 0.36 x 10(9) and 1.6 x 10(9) M-1 s-1 were found for vesicles of 20-30- and 60-80-nm diameter, respectively.  相似文献   

6.
Two different lipophilic photoreagents, [3H]adamantane diazirine and 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID), have been utilized to examine the interactions of blood coagulation factor Va with calcium, prothrombin, factor Xa, and, in particular, phospholipid vesicles. With each of these structurally dissimilar reagents, the extent of photolabeling of factor Va was greater when the protein was bound to a membrane surface than when it was free in solution. Specifically, the covalent photoreaction with Vl, the smaller subunit of factor Va, was 2-fold higher in the presence of phosphatidylcholine/phosphatidylserine (PC/PS, 3:1) vesicles, to which factor Va binds, than in the presence of 100% PC vesicles, to which the protein does not bind. However, the magnitude of the PC/PS-dependent photolabeling was much less than has been observed previously with integral membrane proteins. It therefore appears that the binding of factor Va to the membrane surface exposes Vl to the lipid core of the bilayer, but that only a small portion of the Vl polypeptide is exposed to, or embedded in, the bilayer core. Addition of either prothrombin or active-site-blocked factor Xa to PC/PS-bound factor Va had little effect on the photolabeling of Vl with TID, but reduced substantially the covalent labeling of Vh, the larger subunit of factor Va. This indicates that prothrombin and factor Xa each cover nonpolar surfaces on Vh when the macromolecules associate on the PC/PS surface. It therefore seems likely that the formation of the prothrombinase complex involves a direct interaction between Vh and factor Xa and between Vh and prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In the present paper the influence of beta 2-glycoprotein-I, also known as apolipoprotein H, upon the prothrombinase activity of platelets and phospholipid vesicles was investigated. The results can be summarized as follows. 1. The prothrombinase activity of resting, non-activated platelets, lysed platelets and vesicles composed of phosphatidylserine and phosphatidylcholine at different molar ratios is inhibited by beta 2-glycoprotein-I in a dose-dependent manner. The concentration of glycoprotein which produces marked inhibition is within the physiological plasma concentration range of beta 2-glycoprotein-I. 2. The time dependence of this inhibition is a relatively slow process, which is not fully expressed before 1 h of incubation. 3. The effect of the glycoprotein is not due to a direct interaction with the components of the prothrombinase complex, i.e. factors Xa, Va, Ca2+ or prothrombin, nor is the inhibitory action abolished by increasing concentrations of coagulation factors Xa and Va. This suggests that beta 2-glycoprotein-I causes a reduction of the prothrombinase binding sites of these coagulation factors to platelets or phospholipid vesicles. 4. The prothrombinase activity of platelets stimulated with ionophore A23187 or with collagen plus thrombin is also inhibited by beta 2-glycoprotein-I in a manner similar to that observed for phospholipid vesicles or for lysed platelets. These findings suggest a regulatory role for beta 2-glycoprotein-I in the pathway of blood coagulation.  相似文献   

8.
This article addresses the role of platelet membrane phosphatidylserine (PS) in regulating the production of thrombin, the central regulatory molecule of blood coagulation. PS is normally located on the cytoplasmic face of the resting platelet membrane but appears on the plasma-oriented surface of discrete membrane vesicles that derive from activated platelets. Thrombin, the central molecule of coagulation, is produced from prothrombin by a complex ("prothrombinase") between factor Xa and its protein cofactor (factor V(a)) that forms on platelet-derived membranes. This complex enhances the rate of activation of prothrombin to thrombin by roughly 150,000 fold relative to factor X(a) in solution. It is widely accepted that the negatively charged surface of PS-containing platelet-derived membranes is at least partly responsible for this rate enhancement, although there is not universal agreement on mechanism by which this occurs. Our efforts have led to an alternative view, namely that PS molecules bind to discrete regulatory sites on both factors X(a) and V(a) and allosterically alter their proteolytic and cofactor activities. In this view, exposure of PS on the surface of activated platelet vesicles is a key regulatory event in blood coagulation, and PS serves as a second messenger in this regulatory process. This article reviews our knowledge of the prothrombinase reaction and summarizes recent evidence leading to this alternative viewpoint. This viewpoint suggests a key role for PS both in normal hemostasis and in thrombotic disease.  相似文献   

9.
The rates of prothrombin activation under initial conditions of invariant concentrations of prothrombin and Factor Xa were studied in the presence of various combinations of Ca2+, homogeneous bovine Factor V, Factor Va, phosphatidylcholine-phosphatidylserine vesicles, and activated bovine platelets. Reactions were monitored continuously through the enhanced fluorescence accompanying the interaction of newly formed thrombin with dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide. The complete prothrombinase (Factor Xa, Ca2+, phospholipid, and Factor Va) behaved as a "typical" enzyme and catalyzed the activation of prothrombin with an apparent Vmax of 2100 mol of thrombin/min/mol of Factor Va or Factor Xa, whichever was the rate-limiting component. Regardless of whether the enzymatic complex was composed of Factor Xa, Ca2+, and plasma Factor Va plus phospholipid vesicles, or activated platelets in the place of the latter components, similar specific activity values were observed. The combination of Factor Va, Ca2+, and phospholipid enhanced the rate of the Factor Xa-catalyzed activation of prothrombin by a factor of 278,000. Factor Va itself when added to Factor Xa, Ca2+, and phospholipid, enhanced the rate of prothrombin activation by a factor of 13,000. Unactivated Factor V appears to possess 0.27% of the procoagulant activity of thrombin-activated Factor Va. From the kinetics of prothrombinase activity, an interaction between Factor Xa and both Factor V and Factor Va was observed, with apparent 1:1 stoichiometries and dissociation constants of 7.3 x 10(-10) M for Factor Va and 2.7 x 10(-9) M for Factor V. The present data, combined with data on the equilibrium binding of prothrombinase components to phospholipid, indicate that the model prothrombinase described in this paper consists of a phospholipid-bound, stoichiometric complex of Factor Va and Factor Xa, with bound Factor Va serving as the "binding site" for Factor Xa, in concert with its proposed role in platelets.  相似文献   

10.
Human placental anticoagulant protein: isolation and characterization   总被引:10,自引:0,他引:10  
An anticoagulant protein was purified from the soluble fraction of human placenta by ammonium sulfate precipitation and column chromatography on DEAE-Sepharose, Sephadex G-75, and Mono S (Pharmacia). The yield of the purified protein was approximately 20 mg from one placenta. The purified protein gave a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 36,500. This protein prolonged the clotting time of normal plasma when clotting was induced either by brain thromboplastin or by kaolin in the presence of cephalin and Ca2+. It also prolonged the factor Xa induced clotting time of platelet-rich plasma but did not affect thrombin-induced conversion of fibrinogen to fibrin. The purified placental protein completely inhibited the prothrombin activation by reconstituted prothrombinase, a complex of factor Xa-factor Va-phospholipid-Ca2+. The placenta inhibitor had no effect on prothrombin activation when phospholipid was omitted from the above reaction. Also, it neither inhibited the amidolytic activity of factor Xa, nor did it bind to factor Xa. The placenta inhibitor, however, did bind specifically to phospholipid vesicles (20% phosphatidylserine and 80% phosphatidylcholine) in the presence of calcium ions. These results indicate that the placental anticoagulant protein (PAP) inhibits coagulation by binding to phospholipid vesicles. The amino acid sequences of three cyanogen bromide fragments of PAP aligned with those of two distinct regions of lipocortin I and II with a high degree of homology, showing that PAP is a member of the lipocortin family.  相似文献   

11.
We have shown recently that the calcium-dependent phospholipid-binding protein annexin V (placental anticoagulant protein I) can be used to study the exposure of anionic phospholipid after platelet activation. In this study we have further examined the mechanism of this process. Collagen-induced exposure of annexin V binding sites correlated directly with increased ability to support activity of the reconstituted prothrombinase complex. The potency of annexin V as an inhibitor of platelet prothrombinase was the same as its Kd for platelets. Prior incubation of platelets with 5'-p-fluorosulfonylbenzoyladenosine or p-chloromercuribenzenesulfonate had no significant effect on annexin V binding. Similarly, inhibition of platelet cyclic endoperoxide synthesis by acetylsalicylic acid or indomethacin did not inhibit annexin V binding. Staurosporine inhibited collagen-induced, but not A23187-induced, annexin V binding. Agents that increase intraplatelet cyclic nucleotides partially inhibited collagen-induced annexin V binding. Thus, collagen-induced exposure of anionic phospholipid appears to depend primarily on increases in intraplatelet free calcium and may be independent of ADP- or endoperoxide-mediated pathways. Binding sites for annexin V on microparticles derived from collagen-stimulated platelets were demonstrated by flow cytometry and gel filtration. In addition, prior incubation of platelets with 100 nM annexin V inhibited factor Va binding to both platelets and platelet-derived microparticles. These results support the concept that the procoagulant effect of platelets and platelet-derived microparticles is mediated by calcium-induced exposure of anionic phospholipids.  相似文献   

12.
A membrane-bound Ca2+-dependent complex of the cofactor Factor Va and the enzyme Factor Xa comprises the prothrombinase coagulation complex which catalyzes the proteolytic conversion of prothrombin to thrombin. Analyses of the kinetics of prothrombin activation permit calculation of the stoichiometry and binding parameters governing the functional interactions of Factor Va and Factor Xa with isolated thrombin-activated human platelets and isolated leukocyte subpopulations. Our kinetic approach indicates that Factor Xa binds to approximately 2700 +/- 1000 (n = 8) functional sites on the surface of thrombin-activated platelets with an apparent dissociation constant (Kd) equal to 1.18 +/- 0.53 X 10(-10) M and kcat equal to 19 +/- 7 mol of thrombin/s/mol of Factor Xa bound. The store of Factor V in normal platelets prevents an analogous determination of the functional Factor Va platelet binding sites. Factor Va and Factor Xa titrations performed using platelets from a Factor V antigen-deficient individual indicate that Factor Va and Factor Xa form a 1:1 stoichiometric complex on the surface of thrombin-activated platelets. Both binding isotherms are governed by the same apparent Kd (approximately equal to 10(-10) M) and expressed the same kcat/site (14-17 s-1. Factor Xa-platelet binding parameters are not altered by the use of different platelet agonists, the choice of anticoagulant, or platelet washing procedure. Kinetics of prothrombin activation indicate also that monocytes, lymphocytes, and neutrophils possess, respectively, 16,000, 45,000, and 8,000 Factor Va-Factor Xa receptor sites/cell, which are all governed by apparent KdS approximately equal to 10(-10) M. Enzymatic complexes bound to monocytes or neutrophils exhibit kcat values similar to the platelet-bound complex. Complexes bound to lymphocytes are only 25% as active.  相似文献   

13.
Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host''s immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.  相似文献   

14.
Human secreted group IIA phospholipase A2 (hGIIA) was reported to inhibit prothrombinase activity because of binding to factor Xa. This study further shows that hGIIA and its catalytically inactive H48Q mutant prolong the lag time of thrombin generation in human platelet-rich plasma with similar efficiency, indicating that hGIIA exerts an anticoagulant effect independently of phospholipid hydrolysis under ex vivo conditions. Charge reversal of basic residues on the interfacial binding surface (IBS) of hGIIA leads to decreased ability to inhibit prothrombinase activity, which correlates with a reduced affinity for factor Xa, as determined by surface plasmon resonance. Mutation of other surface-exposed basic residues, hydrophobic residues on the IBS, and His48, does not affect the ability of hGIIA to inhibit prothrombinase activity and bind to factor Xa. Other basic, but not neutral or acidic, mammalian secreted phospholipases A2 (sPLA2s) exert a phospholipid-independent inhibitory effect on prothrombinase activity, suggesting that these basic sPLA2s also bind to factor Xa. In conclusion, this study demonstrates that the anticoagulant effect of hGIIA is independent of phospholipid hydrolysis and is based on its interaction with factor Xa, leading to prothrombinase inhibition, even under ex vivo conditions. This study also shows that such an interaction involves basic residues located on the IBS of hGIIA, and suggests that other basic mammalian sPLA2s may also inhibit blood coagulation by a similar mechanism to that described for hGIIA.  相似文献   

15.
The strongly anticoagulant basic phospholipase A(2) (CM-IV) from Naja nigricollis venom has previously been shown to inhibit the prothrombinase complex of the coagulation cascade by a novel nonenzymatic mechanism (S. Stefansson, R. M. Kini, and H. J. Evans Biochemistry 29, 7742-7746, 1990). That work indicated that CM-IV is a noncompetitive inhibitor and thus it interacts with either factor Va or factor Xa, or both. We further examined the interaction of CM-IV and the protein components of the prothrombinase complex. Isothermal calorimetry studies indicate that CM-IV does not bind to prothrombin or factor Va, but only to factor Xa. CM-IV has no effect on the cleavage of prothrombin by factor Xa in the absence of factor Va. However, in the presence of factor Va, CM-IV inhibits thrombin formation by factor Xa. With a constant amount of CM-IV, raising the concentration of factor Va relieved the inhibition. The phospholipase A(2) enzyme inhibits by competing with factor Va for binding to factor Xa and thus prevents formation of the normal Xa-Va complex or replaces bound factor Va from the complex. Thus factor Xa is the target protein of this anticoagulant phospholipase A(2), which exerts its anticoagulant effect by protein-protein rather than protein-phospholipid interactions.  相似文献   

16.
This study investigates the dynamics of zymogen activation when both extrinsic tenase and prothrombinase are assembled on an appropriate membrane. Although the activation of prothrombin by surface-localized prothrombinase is clearly mediated by flow-induced dilutional effects, we find that when factor X is activated in isolation by surface-localized extrinsic tenase, it exhibits characteristics of diffusion-mediated activation in which diffusion of substrate to the catalytically active region is rate-limiting. When prothrombin and factor X are activated coincident with each other, competition for available membrane binding sites masks the diffusion-limiting effects of factor X activation. To verify the role of membrane binding in the activation of factor X by extrinsic tenase under flow conditions, we demonstrate that bovine lactadherin competes for both factor X and Xa binding sites, limiting factor X activation and forcing the release of bound factor Xa from the membrane at a venous shear rate (100 s(-1)). Finally, we present steady-state models of prothrombin and factor X activation under flow showing that zymogen and enzyme membrane binding events further regulate the coagulation process in an open system representative of the vasculature geometry.  相似文献   

17.
The prothrombinase complex consists of the protease factor Xa, Ca2+, and factor Va assembled on an anionic membrane. Factor Va functions both as a receptor for factor Xa and a positive effector of factor Xa catalytic efficiency and thus is key to efficient conversion of prothrombin to thrombin. The activation of the procofactor, factor V, to factor Va is an essential reaction that occurs early in the process of tissue factor-initiated blood coagulation; however, the catalytic sequence leading to formation of factor Va is a subject of disagreement. We have used biophysical and biochemical approaches to establish the second order rate constants and reaction pathways for the activation of phospholipid-bound human factor V by native and recombinant thrombin and meizothrombin, by mixtures of prothrombin activation products, and by factor Xa. We have also reassessed the activation of phospholipid-bound human prothrombin by factor Xa. Numerical simulations were performed incorporating the various pathways of factor V activation including the presence or absence of the pathway of factor V-independent prothrombin activation by factor Xa. Reaction pathways for factor V activation are similar for all thrombin forms. Empirical rate constants and the simulations are consistent with the following mechanism for factor Va formation. alpha-Thrombin, derived from factor Xa cleavage of phospholipid-bound prothrombin via the prethrombin 2 pathway, catalyzes the initial activation of factor V; generation of factor Va in a milieu already containing factor Xa enables prothrombinase formation with consequent meizothrombin formation; and meizothrombin functions as an amplifier of the process of factor V activation and thus has an important procoagulant role. Direct activation of factor V by factor Xa at physiologically relevant concentrations does not appear to be a significant contributor to factor Va formation.  相似文献   

18.
Anticoagulant mechanism of the coagulation factor IX/factor X-binding protein (IX/X-bp) isolated from the venom of Trimeresurus flavoviridis was investigated. IX/X-bp had no effect on the amidase activity of factor Xa measured with a synthetic peptide substrate Boc-Leu-Gly-Arg-pNA. Prothrombin activation by factor Xa without cofactors, such as factor Va and phospholipids, was only slightly influenced by IX/X-bp. However, prothrombin activation by factor Xa in the presence of factor Va resulted in IX/X-bp inhibiting the increase of k(cat) of thrombin formation through inhibition of interaction between factor Xa and factor Va. IX/X-bp also inhibited the decrease of K(m) for thrombin formation through interaction with phospholipids. Thus, IX/X-bp appears to act as an anticoagulant protein by inhibiting the interaction between factor Xa and its cofactors in the prothrombinase complex by binding to the Gla domain of factor Xa.  相似文献   

19.
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) ~ 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.  相似文献   

20.
We studied the binding of fluorescein-labeled annexin V (placental anticoagulant protein I) to small unilamellar phospholipid vesicles at 0.15 M ionic strength as a function of calcium concentration and membrane phosphatidylserine (PS) content. As the mole percentage of PS in the membrane increased from 10 to 50%, the stoichiometry of binding decreased hyperbolically from 1100 mol phospholipid/mol annexin V to a limiting value of 84 mol/mol for measurements made at 1.2 mM CaCl2. Over the same range of PS content, Kd remained approximately constant at 0.036 +/- 0.011 nM. A similar hyperbolic decrease in stoichiometry was observed with vesicles containing 10 or 20% PS when the calcium concentration was increased from 0.4 to 10 mM. Thus, the density of membrane binding sites is strongly dependent on the membrane PS content and calcium concentration. The effect of calcium on annexin V-membrane binding is proposed to be due to the formation of phospholipid-calcium complexes, to which the protein binds, rather than to an allosteric effect of calcium on protein-phospholipid affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号