首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The 14 species of Ficus of the subgenus Sycomorus (Moraceae) are invariably pollinated by Ceratosolen species (Hym. Chalcidoidea), which in turn reproduce in the fig florets. They are distributed mostly in continental Africa, Madagascar, and the Mascarene and Comoro Islands, but 1 species extends its geographical range all over the Oriental region. Fig-pollinator relationships are usually strictly species specific, but exceptions to the 'one-to-one' rule occur within the group we studied. In order to understand both the biogeographical history of the Ceratosolen species associated with Ficus of the subgenus Sycomorus and the origins of the specificity breakdown cases, we have used cytochrome b sequences to reconstruct a phylogeny of the fig wasps. The results show that the pollinators from the Malagasy region and those from continental Africa form two distinct clades, which probably diverged after the crossing of the Mozambique Channel by an ancestral population. The Oriental wasp species show strong affinities with the African species. The two species-specificity exceptions are due to different evolutionary events. The occurrence of the two West African pollinators associated with F. sur can be explained by successive speciation events of the mutualistic partner without plant radiation. In contrast, we hypothesize that C. galili shifted by horizontal transfer from an unknown, presumably extinct, Ficus species to F. sycomorus after this native Malagasy fig species colonized Africa.  相似文献   

2.
Agaonidae (the pollinators of fig trees, Ficus spp., Moraceae) are a distinctive family of chalcid wasps with uncertain affinities within the Chalcidoidea. Chromosome numbers have only been described previously for one species (Blastophaga psenes, 2n = 12, the pollinator of F. carica, of subgenus Ficus). In this paper, we used a modified technique to analyze the karyology of three Ceratosolen species, Ceratosolen solmsi, C. graveli and C. emarginatus which are associated with figs of Ficus subgenus Sycomorus. Their karyotypes are 2n = 10. All the chromosomes are metacentric (NF = 20) with little difference in relative lengths, making them hard to distinguish. The variation in chromosome numbers that we have detected suggests that karyology can usefully complement molecular-based studies of the phylogeny of fig wasps.  相似文献   

3.
As one of the most specialized pollination syndromes, the fig (Ficus)–fig wasp (Agaonidae) mutualism can shed light on how pollinator behaviour and specificity affect plant diversification through processes such as reproductive isolation and hybridization. Pollinator sharing among species has important implications for Ficus species delimitation and the evolutionary history of the mutualism. Although agaonid wasp pollinators are known to visit more than one host species in monoecious figs, pollinator sharing has yet to be documented in dioecious figs. The present study investigated the frequency of pollinator sharing among sympatric, closely‐related dioecious figs in Ficus sections Sycocarpus and Sycidium. Molecular and morphological species identification established the associations between pollinating agaonid wasp species and host fig species. Cytochrome oxidase I was sequenced from 372 Ceratosolen pollinators of Ficus section Sycocarpus and 210 Kradibia pollinators of Ficus section Sycidium. The association between fig species and morphologically distinct clades of pollinator haplotypes was predominantly one‐to‐one. In Ceratosolen, six of 372 pollinators (1.5%) visited fig species other than the predominant host. No pollinator sharing was detected between the two Sycidium host species, although a rare hybrid shared Kradibia pollinators with both parental species. These findings point to low rates of pollinator sharing among closely‐related dioecious fig species in sympatry, and perhaps lower rates than among monoecious figs. Such rare events could be evolutionarily important as mechanisms for gene flow among fig species. Differences in rates of pollinator sharing among fig lineages might explain the conflicting phylogenetic patterns inferred among monoecious figs, dioecious figs, and their respective pollinators. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 546–558.  相似文献   

4.
Although species pairs and assemblages often occur across geographic regions, ecologists know very little about the outcome of their interactions on such large spatial scales. Here, we assess the geographic distribution and taxonomic diversity of a positive interaction involving ant-tended homopterans and fig trees in the genus Ficus. Previous experimental studies at a few locations in South Africa indicated that Ficus sur indirectly benefited from the presence of a homopteran (Hilda patruelis) because it attracted ants (primarily Pheidole megacephala) that reduced the effects of both pre-dispersal ovule gallers and parasitoids of pollinating wasps. Based on this work, we evaluated three conditions that must be met in order to support the hypothesis that this indirect interaction involves many fig species and occurs throughout much of southern Africa and Madagascar. Data on 429 trees distributed among five countries indicated that 20 of 38 Ficus species, and 46% of all trees sampled, had ants on their figs. Members of the Sycomorus subgenus were significantly more likely to attract ants than those in the Urostigma subgenus, and ant-colonization levels on these species were significantly greater than for Urostigma species. On average, each ant-occupied F.sur tree had 37% of its fig crop colonized by ants, whereas the value was 24% for other Ficus species. H. patruelis was the most common source for attracting ants, although figs were also attacked by a range of other ant-tended homopterans. P. megacephala was significantly more common on figs than other ant species, being present on 58% of sampled trees. Ant densities commonly exceeded 4.5 per fig, which a field experiment indicated was sufficient to provide protection from ovule gallers and parasitoids of pollinators. Forty-nine percent of all colonized F. sur trees sampled had ant densities equal to or greater than 4.5 per fig, whereas this value was 23% for other Ficus species. We conclude that there is considerable evidence to suggest that this indirect interaction occurs across four southern African countries and Madagascar, and involves many Ficus species. Received: 11 December 1997 / Accepted: 6 April 1998  相似文献   

5.

Background  

Hybridization events are relatively common in vascular plants. However, the frequency of these events is unevenly distributed across the plant phylogeny. Plant families in which individual species are pollinated by specific pollinator species are predicted to be less prone to hybridization than other families. However, exceptions may occur within these families, when pollinators shift host-plant species. Indeed, host shifts are expected to increase the rate of hybridization events. Pollinators of Ficus section Galoglychia are suspected to have changed host repeatedly, based on several cases of incongruence between plant phylogeny and taxonomy, and insect phylogeny and taxonomy. We tracked cyto-nuclear discordance across section Galoglychia as evidence for hybridization. To achieve a proper global view, we first clarified the monophyly of section Galoglychia as it had been questioned by recent phylogenetic studies. Moreover, we investigated if fig size could be a factor facilitating host shifts.  相似文献   

6.
The obligate mutualism between fig trees and their fig wasp pollinators, together with the general tendency for each host species to be pollinated by one fig wasp species, led to the hypothesis that these two lineages have cospeciated. The pollinators of African figs of section Galoglychia form a diverse group of genera whose species seem to be less constrained to a specific host than other pollinating fig wasp genera. Various authors have suggested remarkably different phylogenetic relationships between the seven genera associated with section Galoglychia. These uncertainties concerning the classification make it difficult to understand the historical patterns of association between these wasps and their hosts. The phylogenetic tree for the pollinators was reconstructed with 28S, COI and ITS2 DNA sequence data and compared with morphological classification of the hosts. Pollinator genera were monophyletic in all analyses. However, the relative position of some genera remains unresolved. Investigation of host−fig association suggests that there have been frequent host jumps between host subsections. This indicates that cospeciation between fig trees and fig wasps is not as stringent as previously assumed. In addition, pollinators of the genus Alfonsiella associated with three host figs (Ficus craterostoma, F. stuhlmannii and F. petersii) are morphologically very similar in South Africa. We investigated the possibility that these pollinators form a complex of species with host‐based genetic differentiation. Molecular analyses supported the distinction of the pollinator of F. craterostoma as a good species, but the pollinators of F. stuhlmannii and F. petersii clustered within the same clade, suggesting that these two host species share a single pollinator, Alfonsiella binghami. Based on both molecular data and morphological re‐evaluation, a new Alfonsiella species is described, Alfonsiella pipithiensis sp. nov., which is the pollinator of F. craterostoma in southern Africa. A key to both females and males of all described species of Alfonsiella is provided.  相似文献   

7.
Aim Figs (Ficus, Moraceae) are exploited by rich communities of often host‐specific phytophagous wasps. Among them, gall‐inducing Sycophaginae (Hymenoptera, Chalcidoidea) may share a common history with Ficus and their mutualistic pollinators (Agaonidae). We investigate here, for the first time, the phylogeny and biogeographical history of Sycophaginae and compare the timing of radiation and dispersion of major clades with available data on Ficus and fig pollinators. Reconstructing the history of their host colonization and association over space and time is central to understanding how fig wasp communities were assembled. Location World‐wide. Methods Maximum likelihood and Bayesian analyses were conducted on 4267 bp of mitochondrial and nuclear DNA to produce a phylogeny of all genera of Sycophaginae. Two relaxed clock methods with or without rate autocorrelation were used for date estimation. Analyses of ancestral area were also conducted to investigate the geographical origin of the Sycophaginae. Results The phylogeny is well resolved and supported. Our data suggest a post‐Gondwanan origin for the Sycophaginae (50–40 Ma) and two independent out‐of‐Australia dispersal events to continental Asia. Given palaeoclimatic and palaeogeographic records, the following scenario appears the most likely. The ancestor of Idarnes+Apocryptophagus migrated to Greater India through the Ninetyeast Ridge (40–30 Ma). The ancestor of Anidarnes+Conidarnes dispersed later via Sundaland (25–20 Ma). Idarnes and Anidarnes subsequently reached the New World via the North Atlantic land bridges during the Late Oligocene Warming Event. Apocryptophagus reached Africa c. 20 Ma via the Arabic corridors and returned to Australasia following the expansion of Sundaland tropical forests (20–10 Ma). Main conclusions Sycophaginae probably invaded the fig microcosm in Australia c. 50–40 Ma after the origin of their host plant. Once associated with figs, they dispersed out of Australia and radiated together with their host fig and associated pollinator through the tropics. We recorded a good coincidence of timing between dispersal events of Sycophaginae and continental connections. Furthermore, fruit pigeons that disperse figs probably spread out of Australasia through the Indian Ocean via the Ninetyeast Ridge c. 38 Ma. Therefore, our study highlights the potential for combining molecular phylogenetics with multiple methods of dating of interacting groups to reconstruct the historical biogeography of plant–herbivore associations.  相似文献   

8.

Background and Aims

Pollinator specificity facilitates reproductive isolation among plants, and mechanisms that generate specificity influence species boundaries. Long-range volatile attractants, in combination with morphological co-adaptations, are generally regarded as being responsible for maintaining extreme host specificity among the fig wasps that pollinate fig trees, but increasing evidence for breakdowns in specificity is accumulating. The basis of host specificity was examined among two host-specific Ceratosolen fig wasps that pollinate two sympatric varieties of Ficus semicordata, together with the consequences for the plants when pollinators entered the alternative host variety.

Methods

The compositions of floral scents from receptive figs of the two varieties and responses of their pollinators to these volatiles were compared. The behaviour of the wasps once on the surface of the figs was also recorded, together with the reproductive success of figs entered by the two Ceratosolen species.

Key Results

The receptive-phase floral scents of the two varieties had different chemical compositions, but only one Ceratosolen species displayed a preference between them in Y-tube trials. Specificity was reinforced at a later stage, once pollinators were walking on the figs, because both species preferred to enter figs of their normal hosts. Both pollinators could enter figs of both varieties and pollinate them, but figs with extra-varietal pollen were more likely to abort and contained fewer seeds. Hybrid seeds germinated at normal rates.

Conclusions

Contact cues on the surface of figs have been largely ignored in previous studies of fig wasp host preferences, but together with floral scents they maintain host specificity among the pollinators of sympatric F. semicordata varieties. When pollinators enter atypical hosts, post-zygotic factors reduce but do not prevent the production of hybrid offspring, suggesting there may be gene flow between these varieties.  相似文献   

9.
Most plants are pollinated passively, but active pollination has evolved among insects that depend on ovule fertilization for larval development. Anther‐to‐ovule ratios (A/O ratios, a coarse indicator of pollen‐to‐ovule ratios) are strong indicators of pollination mode in fig trees and are consistent within most species. However, unusually high values and high variation of A/O ratios (0.096–10.0) were detected among male plants from 41 natural populations of Ficus tikoua in China. Higher proportions of male (staminate) flowers were associated with a change in their distribution within the figs, from circum‐ostiolar to scattered. Plants bearing figs with ostiolar or scattered male flowers were geographically separated, with scattered male flowers found mainly on the Yungui Plateau in the southwest of our sample area. The A/O ratios of most F. tikoua figs were indicative of passive pollination, but its Ceratosolen fig wasp pollinator actively loads pollen into its pollen pockets. Additional pollen was also carried on their body surface and pollinators emerging from scattered‐flower figs had more surface pollen. Large amounts of pollen grains on the insects' body surface are usually indicative of a passive pollinator. This is the first recorded case of an actively pollinated Ficus species producing large amounts of pollen. Overall high A/O ratios, particularly in some populations, in combination with actively pollinating pollinators, may reflect a response by the plant to insufficient quantities of pollen transported in the wasps’ pollen pockets, together with geographic variation in this pollen limitation. This suggests an unstable scenario that could lead to eventual loss of wasp active pollination behavior.  相似文献   

10.
High specificity in the Ficus‐agaonid wasp mutualism has lead to the assumption of a mostly ‘one‐to‐one’ relationship, albeit with some exceptions. This view has been challenged by new molecular data in recent years, but surprisingly little is known about local and spatial genetic structuring of agaonid wasp populations. Using microsatellite markers, we analysed genetic structuring of Ceratosolen fusciceps, the fig wasp pollinating Ficus racemosa, a fig tree species widely distributed from India to Australia. In sampling stretching from the south of China to the south of Thailand we found evidence for only a single pollinating wasp species in continental South‐East Asian mainland. We found no evidence for the co‐occurrence of cryptic species within our subcontinent sampling zone. We observed no spatial genetic structure within sites and only limited structuring over the whole sampling zone, suggesting that F. racemosa is pollinated by a single population of a single agaonid wasp species all over continental South‐East Asia. An additional sample of wasps collected on F. racemosa in Australia showed clear‐cut genetic differentiation from the Asian continent, suggesting allopatric divergence into subspecies or species. We propose that the frequent local co‐occurrence of sister species found in the literature mainly stems from contact zones between biogeographic regions, and that a single pollinator species over wide areas might be the more common situation everywhere else.  相似文献   

11.
D. Lachaise 《Oecologia》1977,31(2):201-214
Summary The oviposition sites and larval cycle of the African species of Lissocephala, the most primitive genus of Drosophilidae, are described here for the first time. The genus Lissocephala has achieved a novel adaptive direction in the Ethiopian region. All known African species are strictly specialized on Ficus. This species diversity suggests that ecological transfer to Ficus preceded the Lissocephala radiation. Lissocephala larvae breed inside immature figs. The eggs are laid in or near the fig ostiole. First instar larvae enter the fig receptacle though the ostiolar entrance is constantly closed by firmly imbricating bracts. Third instar larvae leave the fig by crawling out between the ostiolar bracts, and drop to the soil where they pupate. Thus Lissocephala species larvae breed inside a sheltered microhabitat, since the numerous other sympatric sycophagous Drosophilids do not have the ability to colonize immature figs. Other groups of Drosophilid species breed successively on the ripening exocarp of the fig following the successive microbial states of the fig. The possibility of coevolution of Lissocephala species, Ficus species and pollinator fig wasp species is discussed. Selection for avoidance of competition increased Lissocephala species' efficiency in exploiting unutilized immature figs and then provided a conspicuous niche separation which contributed to species packing on figs.  相似文献   

12.
为了解榕树果实的资源分配和种子萌发特征,对西双版纳地区的垂叶榕(Ficus benjamina)、高山榕(F.altissima)、聚果榕(F.racemosa)和无柄雅榕(F.concinna)的果实营养、繁殖资源分配,以及种子萌发特性进行了研究。结果表明,4种榕果的营养分配存在差异,榕果重的种类果肉亦多,榕果大者果腔较大,且种子数量较多,但雄花和榕小蜂数量不一定多。榕果分配给雌性功能及雄性功能繁殖的小花比例也不相同,聚果榕在雌性功能上的分配显著大于雄性功能,其它3种榕果则分配于雄性功能的资源比雌性功能的多,但程度不同。此外,4种榕树的种子大小及重量存在显著的种间差异,以至于影响到种子的萌发率及根茎生长,果实最大的聚果榕种子最多,萌发率高,但由于种子最小,其根茎生长缓慢且短;果实适中的垂叶榕和高山榕种子较大,不但萌发率较高,其根茎生长也较快;果实和种子都小的无柄雅榕,种子萌发率低,根茎生长慢。生长在水热环境好的榕树比生长在相对贫瘠环境的榕树,由于极少面临水热光照等限制,更容易进化出较小的种子,萌发能力和速度也相对较差。这说明不同生境中榕树进化出了不同的繁殖分配机制及资源利用策略来适应环境变化。  相似文献   

13.
Ficus species are characterized by their unusual enclosed inflorescences (figs) and their relationship with obligate pollinator fig wasps (Agaonidae). Fig trees have a variety of growth forms, but true epiphytes are rare, and one example is Ficus deltoidea of Southeast Asia. Presumably as an adaptation to epiphytism, inflorescence design in this species is exceptional, with very few flowers in female (seed‐producing) figs and unusually large seeds. Figs on male (pollinator offspring‐generating) trees have many more flowers. Many fig wasps pollinate one fig each, but because of the low number of flowers per fig, efficient utilization by F. deltoidea''s pollinators depends on pollinators entering several female figs. We hypothesized that it is in the interest of the plants to allow pollinators to re‐emerge from figs on both male and female trees and that selection favors pollinator roaming because it increases their own reproductive success. Our manipulations of Blastophaga sp. pollinators in a Malaysian oil palm plantation confirmed that individual pollinators do routinely enter several figs of both sexes. Entering additional figs generated more seeds per pollinator on female trees and more pollinator offspring on male trees. Offspring sex ratios in subsequently entered figs were often less female‐biased than in the first figs they entered, which reduced their immediate value to male trees because only female offspring carry their pollen. Small numbers of large seeds in female figs of epiphytic F. deltoidea may reflect constraints on overall female fig size, because pollinator exploitation depends on mutual mimicry between male and female figs.  相似文献   

14.
Fig wasps (Chalcidoidea, Agaonidae, Agaoninae) are the exclusive pollinators of fig trees (Ficus spp., Moraceae). Fig development on the African fig tree, F. burtt-davyi, is normally synchronised on individual trees, but not between trees. Consequently the females of each generation of the pollinating species (Elisabethiella baijnathi) have to disperse to other trees to find ‘receptive’ figs which are suitable for oviposition. This paper examines this aspect of fig - fig wasp biology. The flight speed of insects is closely linked to their size, and directional flight is difficult for small insects, such as fig wasps, in all but the lightest of winds. We investigated the movements of fig wasps between trees using sticky traps placed around fig trees or near cotton bags containing figs. Away from the trees, the densities of flying wasps at different heights was also determined. When the wasps disperse from their natal figs they take off near-vertically. They are unable to exert directional control once they enter the air column and are subsequently blown downwind. Near receptive host trees the wasps appear to lose height and then fly upwind at speeds of around 25 cm/sec.  相似文献   

15.
1. Fig trees (Ficus spp.) and their host‐specific pollinator fig wasps (Agaonidae) are partners in an obligate mutualism. Receptive phase figs release specific volatiles to attract their pollinators, and this is generally effective in preventing pollinator species from entering figs of the wrong hosts. 2. If entry is attempted into atypical host figs, then ostiole size and shape and style length may also prevent reproduction. In spite of these barriers, there is increasing evidence that fig wasps enter atypical hosts, and that this can result in hybrid seed and fig wasp offspring. 3. This study examines the basis of pollinator specificity in two dioecious fig species from different geographical areas. Kradibia tentacularis pollinates Ficus montana in Asia. Ficus asperifolia from East Africa is closely related but is pollinated by a different species of Kradibia. 4. In glasshouses, K. tentacularis was attracted to its normal host, F1s and backcrosses, but only rarely entered figs of F. asperifolia. Foundresses were able to lay eggs in hybrids, backcrosses, and F. asperifolia, although flower occupancy was lowest in F. asperifolia figs and intermediate in hybrids. 5. The fig wasp failed to reproduce in female F. montana, male F. asperifolia, and male F1s, and most but not all backcrosses to F. montana. This was a result of the failure to initiate gall production. 6. Host specificity in this fig wasp is strongly influenced by host volatiles, but the ability to gall may be the ultimate determinant of whether it can reproduce.  相似文献   

16.
Hong Kong (22°N) is on the northern margins of the Asian tropics and has a native fig flora of 24 species. A total of 3.4 km2 of the urban area on Hong Kong Island was surveyed for spontaneous and planted fig plants of reproductive size. The 1124 individuals included 14 species in four subgenera: seven native species (F. fistulosa, F. hirta, F. hispida, F. microcarpa, F. pumila, F. subpisocarpa, and F. variegata), four of which were sometimes planted, one probably native (F. virens), one naturalizing species (F. religiosa), and five exotic species that occurred only in cultivation, two of which (F. altissima, F. rumphii) are pollinated and produce viable seeds. The native species in the two most common subgenera form distinct ecological guilds: those in subgenus Sycomorus bear large, many‐seeded, green or yellow figs and are bat‐dispersed pioneers on exposed soil; those in subgenus Urostigma bear small, few‐seeded, dark‐purple figs and are largely bird‐dispersed and epilithic. The density of potentially fruiting fig plants in the study area (2.3/ha) was within the range reported for tropical forests and between them they were visited by the entire urban frugivore fauna. This study shows the importance of the urban fig flora to urban wildlife and also highlights the risk of cultivated Ficus species becoming invasive, despite their obligate species‐specific pollinator mutualisms.  相似文献   

17.
The ways that plant‐feeding insects have diversified are central to our understanding of terrestrial ecosystems. Obligate nursery pollination mutualisms provide highly relevant model systems of how plants and their insect associates have diversified and the over 800 species of fig trees (Ficus) allow comparative studies. Fig trees can have one or more pollinating fig wasp species (Agaonidae) that breed within their figs, but factors influencing their number remain to be established. In some widely distributed fig trees, the plants form populations isolated by large swathes of sea, and the different populations are pollinated by different wasp species. Other Ficus species with continuous distributions may present genetic signatures of isolation by distance, suggesting more limited pollinator dispersal, which may also facilitate pollinator speciation. We tested the hypothesis that Ficus hirta, a species for which preliminary data showed genetic isolation by distance, would support numerous pollinator species across its range. Our results show that across its range F. hirta displays clinal genetic variation and is pollinated by nine parapatric species of Valisia. This is the highest number of pollinators reported to date for any Ficus species, and it is the first demonstration of the occurrence of parapatric pollinator species on a fig host displaying continuous genetic structure. Future comparative studies across Ficus species should be able to establish the plant traits that have driven the evolution of pollinator dispersal behaviour, pollinator speciation and host plant spatial genetic structure.  相似文献   

18.
The obligate mutualism of figs and fig‐pollinating wasps has been one of the classic models used for testing theories of co‐evolution and cospeciation due to the high species‐specificity of these relationships. To investigate the species‐specificity between figs and fig pollinators and to further understand the speciation process in obligate mutualisms, we examined the genetic differentiation and phylogenetic relationships of four closely related fig‐pollinating wasp species (Blastophaga nipponica, Blastophaga taiwanensis, Blastophaga tannoensis and Blastophaga yeni) in Japan and Taiwan using genome‐wide sequence data, including mitochondrial DNA sequences. In addition, population structure was analysed for the fig wasps and their host species using microsatellite data. The results suggest that the three Taiwanese fig wasp species are a single panmictic population that pollinates three dioecious fig species, which are sympatrically distributed, have large differences in morphology and ecology and are also genetically differentiated. Our results illustrate the first case of pollinator sharing by host shift in the subgenus Ficus. On the other hand, there are strict genetic codivergences between allopatric populations of the two host–pollinator pairs. The possible processes that produce these pollinator‐sharing events are discussed based on the level and pattern of genetic differentiation in these figs and fig wasps.  相似文献   

19.
Flowering phenology is central to the ecology and evolution of most flowering plants. In highly-specific nursery pollination systems, such as that involving fig trees (Ficus species) and fig wasps (Agaonidae), any mismatch in timing has serious consequences because the plants must balance seed production with maintenance of their pollinator populations. Most fig trees are found in tropical or subtropical habitats, but the dioecious Chinese Ficus tikoua has a more northerly distribution. We monitored how its fruiting phenology has adapted in response to a highly seasonal environment. Male trees (where fig wasps reproduce) had one to three crops annually, whereas many seed-producing female trees produced only one fig crop. The timing of release of Ceratosolen fig wasps from male figs in late May and June was synchronized with the presence of receptive figs on female trees, at a time when there were few receptive figs on male trees, thereby ensuring seed set while allowing remnant pollinator populations to persist. F. tikoua phenology has converged with those of other (unrelated) northern Ficus species, but there are differences. Unlike F. carica in Europe, all F. tikoua male figs contain male flowers, and unlike F. pumila in China, but like F. carica, it is the second annual generation of adult wasps that pollinate female figs. The phenologies of all three temperate fig trees generate annual bottlenecks in the size of pollinator populations and for female F. tikoua also a shortage of fig wasps that results in many figs failing to be pollinated.  相似文献   

20.
While Ficus present a series of traits often associated with dioecy, the prevalence of dioecy in Ficus is atypical. In Asian floras, dioecious Ficus species generally outnumber monoecious ones. Further this is also true in relatively northerly locations for Ficus such as the island of Taiwan. Ficus are pollinated by species-specific wasps that use fig flowers as breeding sites. In dioecious fig species, pollinators develop only in the inflorescences of male fig trees. In this study, we investigated the reproductive phenology of four dioecious Ficus species with distinct ecologies in several locations in northern and southern Taiwan. The two first species (Ficus erecta and Ficus septica) were investigated in four locations. Reproductive phenology was quite different among sites, even within a single species. For example, F. erecta presented well-defined crops at the population level in its usual high-elevation habitat but continuous fig production at low elevations, especially in South Taiwan. The two other fig species (Ficus pedunculosa var. mearnsii and Ficus tinctoria subsp. swinhoei), are shrubs growing together along seashores in exposed locations on coral reef remnants. These two species presented quite different traits allowing the survival of pollinating wasp populations. Ficus pedunculosa var. mearnsii produced figs continuously so that fresh receptive figs were always available for the pollinating wasps while F. tinctoria subsp. swinhoei extended the period of receptivity of its figs, so that receptive figs that had been waiting for pollinating wasps were almost always available. In summary, dioecious figs in Taiwan showed remarkable variation in their phenology, within species among locations or among species within location. Nevertheless, despite this variation, the phenology of the trees always allowed survival of pollinating wasp populations. Dioecious figs seem to have adopted a differentiated set of strategies which result in high resilience of pollinator populations. This resilience could help explain the atypical prevalence of dioecy in Ficus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号