首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
Ecdysterone added in vitro to wing tissue from diapausing Antheraea polyphemus pupae induced the synthesis of several epidermal cell proteins. This is one of few instances in which any steroid hormone in physiological concentrations has been able to induce specific protein synthesis in target tissue in vitro soon after hormone stimulation. Hormone-treated tissue was incubated with 3H-leucine while control tissue was incubated with 14C-leucine. Polyacrylamide gel electrophoretic distribution of labelled wing tissue proteins after ecdysterone stimulation in vitro for various periods of time was determined. The 3H14C ratio emphasized the areas of increased protein synthesis due to ecdysterone. These areas of increased protein synthesis were reproducible with several ecdysterone concentrations and with different incubation times. Induction of protein synthesis occurs at an earlier time period when the hormone dosage is higher, i.e. the lower the dosage, the longer it is necessary for exposure of tissue to hormone. α-Ecdysone, known to initiate the moulting process in vitro in some insect species, also induced protein synthesis. Cortisol, a mammalian steroid hormone, produced no hormone specific protein synthesis. Therefore, the results seen with ecdysterone and α-ecdysone are not the result of non-specific steroid stimulation. When no hormone was added to the incubation medium (control), only one area of the polyacrylamide gel demonstrated protein synthesis. Therefore, there are a few proteins being synthesized in vitro in wing tissue, removed from diapausing animals without hormone stimulation, which may be related to the ‘injury phenomenon’. Protein banding patterns were also determined and compared with the radioactivity profile. The study of such early biochemical and physiological responses of target tissue to hormones will aid in our understanding of a hormone's mechanism of action, since the earlier an event occurs, the more likely that it is the primary result of hormone stimulation.  相似文献   

2.
3.
The main results presented in this article may be summarized as follows: 1. A test method with deseeded Avena seedlings for small concentrations of auxin and precursors of auxin has been described. 2. This method makes possible quantitative determinations of about ten times as low concentrations of hormone as can be obtained with the standard method, (a) Through an increase in the time of the test, so that nearly all the hormone applied can be utilized. (b) Through an increase in sensitivity of deseeded plants to unilaterally applied small concentrations of hormone. 3. The effect of deseeding in relation to curvature growth is primarily the prevention of auxin regeneration through the removal of the material for auxin synthesis, and in addition the prevention of physiological aging. 4. The mechanism of auxin synthesis in the tip of the coleoptile and the mechanism of auxin regeneration in the new physiological tip have been shown to be identical. 5. The application of the deseeded method is illustrated by determinations of auxin in primary leaves and coleoptile sections of Avena seedlings. 6. The deseeded method has been used as a test method for precursors of auxin obtainable from the coleoptile and from other sources. The method further makes possible a distinction between auxins and these substances which may become activated by the plant. 7. Evidence for the existence of a precursor of auxin in the plant is given (a) indirectly by determinations of the decrease in auxin synthesis in deseeded plants. (b) Directly by its isolation from the plant. 8. Precursors of hetero-auxin are demonstrated; their chemical nature and activation are briefly considered.  相似文献   

4.
Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed.  相似文献   

5.
The regulation of cellular auxin levels is a critical factor in determining plant growth and architecture, as indole-3-acetic acid (IAA) gradients along the plant axis and local IAA maxima are known to initiate numerous plant growth responses. The regulation of auxin homeostasis is mediated in part by transport, conjugation and deconjugation, as well as by de novo biosynthesis. However, the pathways of IAA biosynthesis are yet not entirely characterized at the molecular and biochemical level. It is suggested that several biosynthetic routes for the formation of IAA have evolved. One such pathway proceeds via the intermediate indole-3-acetamide (IAM), which is converted into IAA by the activity of specific IAM hydrolases, such as Arabidopsis AMIDASE1 (AMI1). In this article we present evidence to support the argument that AMI1-dependent IAA synthesis is likely not to be used during the first two days of seedling development.Key words: Arabidopsis thaliana, auxin biosynthesis, AMIDASE1, indole-3-acetic acid, indole-3-acetamide, LEAFY COTYLEDON1, seed developmentAuxins are versatile plant hormones that play diverse roles in regulating many aspects of plant growth and development.1 To enable auxins to develop their activity, a tight spatiotemporal control of cellular indole-3-acetic acid (IAA) contents is absolutely necessary since it is well-documented that auxin action is dose dependent, and that high IAA levels can have inhibitory effects on plant growth.2 To achieve this goal, plants have evolved a set of different mechanisms to control cellular hormone levels. On the one hand, plants possess several pathways that contribute to the de novo synthesis of IAA. This multiplicity of biosynthetic routes presumably facilitates fine-tuning of the IAA production. On the other hand, plants are equipped with a variety of enzymes that are used to conjugate free auxin to either sugars, amino acids or peptides and small proteins, respectively, or on the contrary, that act as IAA-conjugate hydrolases, releasing free IAA from corresponding conjugates. IAA-conjugates serve as a physiologically inactive storage form of IAA from which the active hormone can be quickly released on demand. Alternatively, conjugation of IAA can mark the first step of IAA catabolism. In general, conjugation and deconjugation of free IAA are ways to positively or negatively affect active hormone levels, which adds another level of complexity to the system. Additionally, IAA can be transported from cell to cell in a polar manner, which is dependent on the action of several transport proteins. All together, these means are used to form auxin gradients and local maxima that are essential to initiate plant growth processes, such as root or leaf primordia formation.3  相似文献   

6.
Gonadotropin-releasing hormone (GnRH) acts via 7 transmembrane region receptors on gonadotrophs to stimulate synthesis and secretion of the luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used (nuclear factor of activated T-cells 2 (NFAT2)-emerald fluorescent protein) to monitor GnRH signaling. Increasing [Ca2+]i causes calmodulin/calcineurin-dependent nuclear NFAT translocation, a response involving proteins (calmodulins and NFATs) that decode frequency in other systems. Using live cell imaging, pulsatile GnRH caused dose- and frequency-dependent increases in nuclear NFAT2-emerald fluorescent protein, and at low frequency, translocation simply tracked GnRH exposure (albeit with slower kinetics). At high frequency (30-min intervals), failure to return to basal conditions before repeat stimulation caused integrative tracking, illustrating how the relative dynamics of up- and downstream signals can increase efficiency of GnRH action. Mathematical modeling predicted desensitization of GnRH effects on [Ca2+]i and that desensitization would increase with dose, frequency, and receptor number, but no such desensitization was seen in HeLa and/or LβT2 cells possibly because pulsatile GnRH did not reduce receptor expression (measured by immunofluorescence). GnRH also caused dose- and frequency-dependent activation of αGSU, luteinizing hormone β, and follicle-stimulating hormone β luciferase reporters, effects that were blocked by calcineurin inhibition. Pulsatile GnRH also activated an NFAT-responsive luciferase reporter, but this response was directly related to cumulative pulse duration. This together with the lack of desensitization of translocation responses suggests that NFAT may mediate GnRH action but is not a genuine decoder of GnRH pulse frequency.  相似文献   

7.
SPECIFIC responses involving plant growth and behaviour are obtained with plant hormones and synthetic growth-regulating substances1. Enhancement of overall growth involving all parts of the plant has not been demonstrated with these substances. Using the fatty hormones, brassins, we increased repeatedly the overall growth of bean and some other kinds of plants in greenhouse conditions during the past 3 yr2. These findings have broad implications for the existence of hormone control factors of a new type.  相似文献   

8.
9.
Steroid Control of Genomic Expression in Embryonic Chick Retina   总被引:2,自引:0,他引:2  
  相似文献   

10.
Salicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis.Key words: abiotic stress responses, Arabidopsis thaliana, gibberellins, hormone cross-talk, salicylic acidGAs and SA play important roles in many processes of plant growth and development, and despite the recent papers reporting the existence of a complex network of hormone interactions, evidences of a cross talk between these two plant hormones have been very scarce.1,2 These authors indicate that GAs are able to regulate SA biosynthesis during plant responses to pathogens. Interestingly, ABA has recently been proved to negative regulate SA-mediated defenses by downregulating SA biosynthesis.3 These data are consistent with the well known ABA/GAs antagonistic regulation of many aspects of plant development, such as seed dormancy or germination.4,5 Thus, it seems clear that ABA and GAs are able to control plant immune responses by modulating the levels of salicylic acid and/or jasmonic acid.13 In addition to the role of GAs in the regulation of plant responses to biotic stress, we have recently documented a role of GAs in early plant abiotic stress responses in Arabidopsis through modulation of SA levels,6 hormone that been involved in responses to abiotic stress conditions.7 For instance, it has been proved that SA has an important role in heat stress responses8 or in the improved germination of Arabidopsis thaliana seeds under salt stress conditions.9We showed that GAs and the overexpression of a GA-responsive gene were able to increase not only endogenous levels of SA, but also the expression of ics1 and npr1 genes, involved in SA biosynthesis and action, respectively.6 In addition, we have also analyzed expression levels of other genes that have been reported as SA-regulated. For instance, isocitrate lyase, a key enzyme involved in lipid metabolism during seed germination10 and a good marker of seed vigor under stress conditions,11 was found to be induced by SA in germinated seeds of Arabidopsis thaliana.9 Thus, we proved that the expression of isocitrate lyase was upregulated in GASA4 overexpressing lines, and after exogenous application of GA3 (Fig. 1), both situations increasing endogenous SA levels.6 We have documented that SA may have a role in some of the physiological processes associated with GAs, since exogenous application of SA was able to both revert the inhibitory effect of PCB on seed germination and improve germination of the GA-deficient mutant ga1–3.6 Thus, we can hypothesize that the GA-mediated induction of isocitrate lyase gene observed in Arabidopsis thaliana is the result of the increased levels of SA detected either after overexpression of the GA-induced GASA4 gene in Arabidopsis or after exogenous application of gibberellic acid. In other words, GAs are able to induce the expression of isocitrate lyase gene in a SA-dependent manner, producing the establishment of a vigorous seedling.9 These data support the idea that GAs may have an important role in SA biosynthesis and action, and that some of the physiological effects of this hormone may be mediate by SA. In summary, our results clearly show the existence of a cross talk between these two plant hormones during Arabidopsis thaliana seeds germination and early seedling growth under abiotic stress conditions, showing another junction in the complex mechanism of hormone interactions.Open in a separate windowFigure 1(A) Expression of the isocitrate lyase gene in FsGASA-overexpressing plants (G1 to G3) compared to Col-0. (B) Expression of the isocitrate lyase gene in Arabidopsis seedlings treated or not with 100 µM GA3. mRNA levels were determined by northern blot analysis using total RNAs (10 µg/line) isolated from 7 d-old seedlings. Bottom, ethidium bromide stained gels showing rRNAs. Top: quantification of hybridization signals obtained by using a phosphoimage scanner. Data were normalized to the rRNA value. Blots were repeated twice and yielded similar results.  相似文献   

11.
An intricate network of hormone signals regulates plant development and responses to biotic and abiotic stress. Salicylic acid (SA), derived from the shikimate/isochorismate pathway, is a key hormone in resistance to biotrophic pathogens. Several SA derivatives and associated modifying enzymes have been identified and implicated in the storage and channeling of benzoic acid intermediates or as bioactive molecules. However, the range and modes of action of SA-related metabolites remain elusive. In Arabidopsis, Enhanced Disease Susceptibility 1 (EDS1) promotes SA-dependent and SA-independent responses in resistance against pathogens. Here, we used metabolite profiling of Arabidopsis wild type and eds1 mutant leaf extracts to identify molecules, other than SA, whose accumulation requires EDS1 signaling. Nuclear magnetic resonance and mass spectrometry of isolated and purified compounds revealed 2,3-dihydroxybenzoic acid (2,3-DHBA) as an isochorismate-derived secondary metabolite whose accumulation depends on EDS1 in resistance responses and during ageing of plants. 2,3-DHBA exists predominantly as a xylose-conjugated form (2-hydroxy-3-β-O-d-xylopyranosyloxy benzoic acid) that is structurally distinct from known SA-glucose conjugates. Analysis of DHBA accumulation profiles in various Arabidopsis mutants suggests an enzymatic route to 2,3-DHBA synthesis that is under the control of EDS1. We propose that components of the EDS1 pathway direct the generation or stabilization of 2,3-DHBA, which as a potentially bioactive molecule is sequestered as a xylose conjugate.  相似文献   

12.
Annual grass invasion into shrub-dominated ecosystems is associated with changes in nutrient cycling that may alter nitrogen (N) limitation and retention. Carbon (C) applications that reduce plant-available N have been suggested to give native perennial vegetation a competitive advantage over exotic annual grasses, but plant community and N retention responses to C addition remain poorly understood in these ecosystems. The main objectives of this study were to (1) evaluate the degree of N limitation of plant biomass in intact versus B. tectorum-invaded sagebrush communities, (2) determine if plant N limitation patterns are reflected in the strength of tracer 15N retention over two growing seasons, and (3) assess if the strength of plant N limitation predicts the efficacy of carbon additions intended to reduce soil N availability and plant growth. Labile C additions reduced biomass of exotic annual species; however, growth of native A. tridentata shrubs also declined. Exotic annual and native perennial plant communities had divergent responses to added N, with B. tectorum displaying greater ability to use added N to rapidly increase aboveground biomass, and native perennials increasing their tissue N concentration but showing little growth response. Few differences in N pools between the annual and native communities were detected. In contrast to expectations, however, more 15N was retained over two growing seasons in the invaded annual grass than in the native shrub community. Our data suggest that N cycling in converted exotic annual grasslands of the northern Intermountain West, USA, may retain N more strongly than previously thought.  相似文献   

13.
Melanocytes are found in various organs of ectothermic animals, playing a protective role against bacteria and free radicals. It is known that pigment cells from hematopoietic organs have immune functions. However, the role of visceral melanocytes is not well understood. Cutaneous melanocytes are responsive to α-melanocyte stimulating hormone (α-MSH), which is associated with the dispersion of melanin granules within melanocytes. α-MSH has also been reported to inhibit most forms of inflammatory responses by decreasing the pro-inflammatory cytokines and neutrophil migration. The present study evaluated the influence of an α-MSH analog (Nle4, D-Phe7-α-MSH) and lipopolysaccharides (LPS) from Escherichia coli on the liver and testicular tissues of the anuran Eupemphix nattereri. The tested hypotheses were: (i) the pigmented area will increase following hormone and LPS administration, (ii) pre-treatment with α-MSH will decrease the number of mast cells, and (iii) the hormone will have protective effects against LPS-induced responses. We found that hormone administration did not change hepatic pigmentation, but increased testicular pigmentation. Testicular pigmentation quickly increased after LPS administration, whereas there was a late response in the liver. The response of enhanced pigmentation was delayed and the number of mast cells decreased in animals previously treated with the α-MSH analog when compared to the LPS group. Hemosiderin and lipofuscin were found in melanomacrophages, but not in testicular melanocytes. Although both the liver and the testes of E. nattereri have pigmented cells, these are distinct in morphology, embryonic origin, and pigmentary substances. These differences may be responsible for the different responses of these cells to the α-MSH analog and LPS administration.  相似文献   

14.
Early ABA Signaling Events in Guard Cells   总被引:1,自引:0,他引:1  
The plant hormone abscisic acid (ABA) regulates a wide variety of plant physiological and developmental processes, particularly responses to environmental stress, such as drought. In response to water deficiency, plants redistribute foliar ABA and/or upregulate ABA synthesis in roots, leading to roughly a 30-fold increase in ABA concentration in the apoplast of stomatal guard cells. The elevated ABA triggers a chain of events in guard cells, causing stomatal closure and thus preventing water loss. Although the molecular nature of ABA receptor(s) remains unknown, considerable progress in the identification and characterization of its downstream signaling elements has been made by using combined physiological, biochemical, biophysical, molecular, and genetic approaches. The measurable events associated with ABA-induced stomatal closure in guard cells include, sequentially, the production of reactive oxygen species (ROS), increases in cytosolic free Ca2+ levels ([Ca2+]i), activation of anion channels, membrane potential depolarization, cytosolic alkalinization, inhibition of K+ influx channels, and promotion of K+ efflux channels. This review provides an overview of the cellular and molecular mechanisms underlying these ABA-evoked signaling events, with particular emphasis on how ABA triggers an “electronic circuitry” involving these ionic components.  相似文献   

15.
16.
The effect of adrenocorticotropic hormone and dibutyryl cyclic AMP on the uptake of 45Ca2+ by the rat adrenal gland has been investigated. After injection of 45Ca2+ and adrenocorticotropic hormone into rats, the adrenal 45Ca2+ concentration was significantly enhanced 90 to 180 min following hormone administration. The rise in adrenal 45Ca2+ content was accompanied by a marked increase of the serum corticosterone levels. During incubation of rat adrenal glands in the presence of 45Ca2+, adrenocorticotropic hormone and dibutyryl cyclic AMP caused significant accumulation of adrenal 45Ca2+ and increased corticosterone synthesis. The degree of stimulation of both adrenal 45Ca2+ uptake and corticosterone synthesis by adrenocorticotropic hormone or dibutyryl cyclic AMP was dependent upon the concentration of calcium in the incubation medium and upon the amount of adrenocorticotropic hormone or dibutyryl cyclic AMP added. Theophylline mimicked the stimulatory effect of adrenocorticotropic hormone and dibutyryl cyclic AMP and increased the uptake of 45Ca2+ by rat adrenal glands in vitro. Determination of calcium by atomic absorption spectroscopy showed that the adrenocorticotropic hormone-mediated adrenal 45Ca2+ uptake was due to a net accumulation of calcium in the tissue and not only to an increased rate of exchange of extracellular 45Ca2+ with the intracellular calcium pool. Adrenocorticotropic hormone-stimulated adrenal 45Ca2+ uptake was not observed when steroidogenesis was inhibited with elipten. Both adrenocorticotropic hormone-mediated corticosterone synthesis and adrenal 45Ca2+ uptake were abolished after treatment of rats with cycloheximide but not after treatment with actinomycin D, indicating that adrenal 45Ca2+ uptake and steroidogenesis have similar requirements for de novo protein synthesis, but not RNA synthesis.  相似文献   

17.
18.
The injection of β-ecdysone into chilled Hyalophora gloveri pupae resulted in the stimulation of adenyl cyclase activity in the wing epidermis as measured by the incorporation of label into cyclic AMP from a prelabeled endogenous pool. Stimulation was also obtained in pupal wings in vitro and in wing epidermal homogenates. Although the sequence of responses to β-ecdysone in vitro depended on the composition of the incubation medium, the stimulation of cyclic AMP synthesis always preceded increases in the rates of RNA and protein synthesis. The increase in adenyl cyclase activity is the earliest metabolic event thus far discerned as a result of β-ecdysone action. It is suggested that β-ecdysone stimulates adenyl cyclase (and guanyl cyclase) but that the hormone also exerts effects on target cells independent of the cyclic AMP system.  相似文献   

19.
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2DD, in tobacco induces the expression of defense genes and hypersensitive response–like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid–induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response–like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

20.
Plant growth promotion is a multigenic process under the influence of many factors; therefore an understanding of these processes and the functions regulated may have profound implications. Present study reports microarray analysis of Arabidopsis thaliana plants inoculated with Pseudomonas putida MTCC5279 (MTCC5279) which resulted in significant increase in growth traits as compared with non-inoculated control. The gene expression changes, represented by oligonucleotide array (24652 genes) have been studied to gain insight into MTCC5279 assisted plant growth promotion in Arabidopsis thaliana. MTCC5279 induced upregulated Arabidopsis thaliana genes were found to be involved in maintenance of genome integrity (At5g20850), growth hormone (At3g23890 and At4g36110), amino acid synthesis (At5g63890), abcissic acid (ABA) signaling and ethylene suppression (At2g29090, At5g17850), Ca+2 dependent signaling (At3g57530) and induction of induced systemic resistance (At2g46370, At2g44840). The genes At3g32920 and At2g15890 which are suggested to act early in petal, stamen and embryonic development are among the downregulated genes. We report for the first time MTCC5279 assisted repression of At3g32920, a putative DNA repair protein involved in recombination and DNA strand transfer in a process of rapid meiotic and mitotic division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号