首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 200 毫秒
1.
Cytochrome c oxidase is an electron-transfer driven proton pump. In this paper, we propose a complete chemical mechanism for the enzyme's proton-pumping site. The mechanism achieves pumping with chemical reaction steps localized at a redox center within the enzyme; no indirect coupling through protein conformational changes is required. The proposed mechanism is based on a novel redox-linked transition metal ligand substitution reaction. The use of this reaction leads in a straightforward manner to explicit mechanisms for achieving all of the processes previously determined (Blair, D.F., Gelles, J. and Chan, S.I. (1986) Biophys. J. 50, 713-733) to be needed to accomplish redox-linked proton pumping. These processes include: (1) modulation of the energetics of protonation/deprotonation reactions and modulation of the energetics of redox reactions by the structural state of the pumping site; (2) control of the rates of the pump's redox reactions with its electron-transfer partners during the turnover cycle (gating of electrons); and (3) regulation of the rates of the protonation/deprotonation reactions between the pumping site and the aqueous phases on the two sides of the membrane during the reaction cycle (gating of protons). The model is the first proposed for the cytochrome oxidase proton pump which is mechanistically complete and sufficiently specific that a realistic assessment can be made of how well the model pump would function as a redox-linked free-energy transducer. This assessment is accomplished via analyses of the thermodynamic properties and steady-state kinetics expected of the model. These analyses demonstrate that the model would function as an efficient pump and that its behavior would be very similar to that observed of cytochrome oxidase both in the mitochondrion and in purified preparations. The analysis presented here leads to the following important general conclusions regarding the mechanistic features of the oxidase proton pump. (1) A workable proton-pump mechanism does not require large protein conformational changes. (2) A redox-linked proton pump need not display a pH-dependent midpoint potential, as has frequently been assumed. (3) Mechanisms for redox-linked proton pumps that involve transition metal ligand exchange reactions are quite attractive because such reactions readily lend themselves to the linked gating processes necessary for proton pumping.  相似文献   

2.
Functional and structural data are reviewed which provide evidence that proton pumping in cytochrome c oxidase is associated with extended allosteric cooperativity involving the four redox centers in the enzyme . Data are also summarized showing that the H+/e- stoichiometry for proton pumping in the cytochrome span of the mitochondrial respiratory chain is flexible. The DeltapH component of the bulk-phase membrane electrochemical proton gradient exerts a decoupling effect on the proton pump of both the bc1 complex and cytochrome c oxidase. A slip in the pumping efficiency of the latter is also caused by high electron pressure. The mechanistic and physiological implications of proton-pump slips are examined. The easiness with which bulk phase DeltapH causes, at least above a threshold level, decoupling of proton pumping indicates that for active oxidative phosphorylation efficient protonic coupling between redox complexes and ATP synthase takes place at the membrane surface, likely in cristae, without significant formation of delocalized DeltamuH+. A role of slips in modulating oxygen free radical production by the respiratory chain and the mitochondrial pathway of apoptosis is discussed.  相似文献   

3.
The cytochrome c oxidase complex (CcO) catalyzes the four-electron reduction of dioxygen to water by using electrons from ferrocytochrome c. Redox free energy released in this highly exergonic process is utilized to drive the translocation of protons across a transmembrane electrochemical gradient. Although numerous chemical models of proton pumping have been developed, few attempts have been made to explain the stepwise transfer of energy in the context of proposed protein conformational changes. A model is described that seeks to clarify the thermodynamics of the proton pumping function of CcO and that illustrates the importance of electron and proton gating to prevent the occurrence of the more exergonic electron leak and proton slip reactions. The redox energy of the CcO-membrane system is formulated in terms of a multidimensional energy surface projected into two dimensions, a nuclear coordinate associated with electron transfer and a nuclear coordinate associated with elements of the proton pump. This model provides an understanding of how a transmembrane electrochemical gradient affects the efficiency of the proton pumping process. Specifically, electron leak and proton slip reactions become kinetically viable as a result of the greater energy barriers that develop for the desired reactions in the presence of a transmembrane potential.  相似文献   

4.
The transient kinetics of proton pumping and the electron transfer properties of cytochrome oxidase inserted into small unilamellar vesicles have been investigated by stopped-flow spectrophotometry. In the presence of valinomycin, proton pumping and cytochrome c oxidation by cytochrome oxidase are synchronous up to rate constants of approximately 9 sec-1. Moreover, the enzyme depleted of subunit III ("three-less oxidase") was also shown to pump protons, although with a significantly smaller stoichiometry. Thus, subunit III is not the only (or even the main) proton channel, although it may be involved in the regulation of activity. The kinetics of cytochrome c oxidation by COV in the absence and in the presence of ionophores have been investigated. Analysis of the time course of the process in the transient and steady state phases indicates that the onset of control by the electrochemical gradient follows the transfer of four electrons, i.e., one complete turnover of the oxidase. Two possible alternative interpretations for the control of the turnover phase are presented and discussed.  相似文献   

5.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

6.
The heme-copper oxidases may be divided into three categories, A, B, and C, which include cytochrome c and quinol-oxidising enzymes. All three types are known to be proton pumps and are found in prokaryotes, whereas eukaryotes only contain A-type cytochrome c oxidase in their inner mitochondrial membrane. However, the bacterial B- and C-type enzymes have often been reported to pump protons with an H+/e- ratio of only one half of the unit stoichiometry in the A-type enzyme. We will show here that these observations are likely to be the result of difficulties with the measuring technique together with a higher sensitivity of the B- and C-type enzymes to the protonmotive force that opposes pumping. We find that under optimal conditions the H+/e- ratio is close to unity in all the three heme-copper oxidase subfamilies. A higher tendency for proton leak in the B- and C-type enzymes may result from less efficient gating of a proton pump mechanism that we suggest evolved before the so-called D-channel of proton transfer. There is also a discrepancy between results using whole bacterial cells vs. phospholipid vesicles inlaid with oxidase with respect to the observed proton pumping after modification of the D-channel residue asparagine-139 (Rhodobacter sphaeroides numbering) to aspartate in A-type cytochrome c oxidase. This discrepancy might also be explained by a higher sensitivity of proton pumping to protonmotive force in the mutated variant. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

7.
The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism.  相似文献   

8.
Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

9.
The operation of cytochrome c oxidase with ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine as substrate in antimycin-A-inhibited rat liver mitochondria is coupled to proton ejection. Measurements of the initial rate of valinomycin-dependent K+ uptake have shown that nearly 4 K+ are taken up as 2 electrons are transferred from cytochrome c to oxygen. This proves directly that a charge separation of nearly 4 occurs across the inner mitochondrial membrane each time 2 electrons are transferred to oxygen. Measurements of the initial rate of proton movement after addition of the reductant show that about 1.6 protons are released by the mitochondria as 2 electrons are transferred from cytochrome c to oxygen. The data support the suggestion of a proton pump coupled to the operation of cytochrome c oxidase [Wikstr?m, M. F. K. (1977) Nature (Lond.) 266, 271--273].  相似文献   

10.
Eukaryotic cytochrome c oxidase (CcO), the terminal component of the mitochondrial electron transport chain is a heterooligomeric complex that belongs to the superfamily of heme-copper containing terminal oxidases. The enzyme, composed of both mitochondrially and nuclear encoded subunits, is embedded in the inner mitochondrial membrane, where it catalyzes the transfer of electrons form reduced cytochrome c to dioxygen, coupling this reaction with vectorial proton pumping across the inner membrane. Due to the complexity of the enzyme, the biogenesis of CcO involves a multiplicity of steps, carried out by a number of highly specific gene products. These include mainly proteins that mediate the delivery and insertion of copper ions, synthesis and incorporation of heme moieties and membrane-insertion and topogenesis of constituent protein subunits. Isolated CcO deficiency represents one of the most frequently recognized causes of respiratory chain defects in humans, associated with severe, often fatal clinical phenotype. Here we review recent advancements in the understanding of this intricate process, with a focus on mammalian enzyme.  相似文献   

11.
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .  相似文献   

12.
Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory electron transport chain of aerobic organisms. It catalyses the reduction of atmospheric oxygen to water, and couples this reaction to proton pumping across the membrane; this process generates the electrochemical gradient that subsequently drives the synthesis of ATP. The molecular details of the mechanism by which electron transfer is coupled to proton pumping in CcO is poorly understood. Recent calculations from our group indicate that His291, a ligand of the Cu(B) center of the enzyme, may play the role of the pumping element. In this paper we describe calculations in which a DFT/continuum electrostatic method is used to explore the coupling of the conformational changes of Glu242 residue, the main proton donor of both chemical and pump protons, to its pKa, and the pKa of His291, a putative proton loading site of our pumping model. The computations are done for several redox states of metal centers, different protonation states of Glu242 and His291, and two well-defined conformations of the Glu242 side chain. Thus, in addition to equilibrium redox/protonation states of the catalytic cycle, we also examine the transient and intermediate states. Different dielectric models are employed to investigate the robustness of the results, and their viability in the light of the proposed proton pumping mechanism of CcO. The main results are in agreement with the experimental measurements and support the proposed pumping mechanism. Additionally, the present calculations indicate a possibility of gating through conformational changes of Glu242; namely, in the pumping step, we find that Glu242 needs to be reprotonated before His291 can eject a proton to the P-site of membrane. As a result, the reprotonation of Glu can control proton release from the proton loading site.  相似文献   

13.
Cytochrome c oxidase mediates the final step of electron transfer reactions in the respiratory chain, catalyzing the transfer between cytochrome c and the molecular oxygen and concomitantly pumping protons across the inner mitochondrial membrane. We investigate the electron transfer reactions in cytochrome c oxidase, particularly the control of the effective electronic coupling by the nuclear thermal motion. The effective coupling is calculated using the Green's function technique with an extended Huckel level electronic Hamiltonian, combined with all-atom molecular dynamics of the protein in a native (membrane and solvent) environment. The effective coupling between Cu(A) and heme a is found to be dominated by the pathway that starts from His(B204). The coupling between heme a and heme a(3) is dominated by a through-space jump between the two heme rings rather than by covalent pathways. In the both steps, the effective electronic coupling is robust to the thermal nuclear vibrations, thereby providing fast and efficient electron transfer.  相似文献   

14.
Protein-mediated electron transfer is a key process in nature. Many of the proteins involved in such electron transfers are complex and contain a number of redox-active cofactors. The very complexity of these multi-centre redox proteins has made it difficult to fully understand the various electron transfer events they catalyse. This is sometimes because the electron transfer steps themselves are gated or coupled to other processes such as proton transfer. However, with the molecular structures of many of these proteins now available it is possible to probe these electron transfer reactions at the molecular level. It is becoming apparent that many of these multi-centre redox proteins have rather subtle and elegant ways for regulating electron transfer. The purpose of this article is to illustrate how nature has used different approaches to control electron transfer in a number of different systems. Illustrative examples include: thermodynamic control of electron transfer in flavocytochromes b(2) and P450 BM3; a novel control mechanism involving calmodulin-binding-dependent electron transfer in neuronal nitric oxide synthase; the probable gating of electron transfer by ATP hydrolysis in nitrogenase; conformational gating of electron transfer in cytochrome cd(1); the regulation of electron transfer by protein dynamics in the cytochrome bc(1) complex; and finally the coupling of electron transfer to proton transfer in cytochrome c oxidase.  相似文献   

15.
In cytochrome c oxidase (CcO), exergonic electron transfer reactions from cytochrome c to oxygen drive proton pumping across the membrane. Elucidation of the proton pumping mechanism requires identification of the molecular components involved in the proton transfer reactions and investigation of the coupling between internal electron and proton transfer reactions in CcO. While the proton-input trajectory in CcO is relatively well characterized, the components of the output pathway have not been identified in detail. In this study, we have investigated the pH dependence of electron transfer reactions that are linked to proton translocation in a structural variant of CcO in which Arg481, which interacts with the heme D-ring propionates in a proposed proton output pathway, was replaced with Lys (RK481 CcO). The results show that in RK481 CcO the midpoint potentials of hemes a and a(3) were lowered by approximately 40 and approximately 15 mV, respectively, which stabilizes the reduced state of Cu(A) during reaction of the reduced CcO with O(2). In addition, while the pH dependence of the F --> O rate in wild-type CcO is determined by the protonation state of two protonatable groups with pK(a) values of 6.3 and 9.4, only the high-pK(a) group influences this rate in RK481 CcO. The results indicate that the protonation state of the Arg481 heme a(3) D-ring propionate cluster having a pK(a) of approximately 6.3 modulates the rate of internal electron transfer and may act as an acceptor of pumped protons.  相似文献   

16.
This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.  相似文献   

17.
A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.  相似文献   

18.
Adrenal medullary chromaffin-vesicle membranes contain a transmembrane electron carrier that may provide reducing equivalents for intravesicular dopamine beta-hydroxylase in vivo. This electron transfer system can generate a membrane potential (inside positive) across resealed chromaffin-vesicle membranes (ghosts) by passing electrons from an internal electron donor to an external electron acceptor. Both ascorbic acid and isoascorbic acid are suitable electron donors. As an electron acceptor, ferricyanide elicits a transient increase in membrane potential at physiological temperatures. A stable membrane potential can be produced by coupling the chromaffin-vesicle electron-transfer system to cytochrome oxidase by using cytochrome c. The membrane potential is generated by transferring electrons from the internal electron donor to cytochrome c. Cytochrome c is then reoxidized by cytochrome oxidase. In this coupled system, the rate of electron transfer can be measured as the rate of oxygen consumption. The chromaffin-vesicle electron-transfer system reduces cytochrome c relatively slowly, but the rate is greatly accelerated by low concentrations of ferrocyanide. Accordingly, stable electron transfer dependent membrane potentials require cytochrome c, oxygen, and ferrocyanide. They are abolished by the cytochrome oxidase inhibitor cyanide. This membrane potential drives reserpine-sensitive norepinephrine transport, confirming the location of the electron-transfer system in the chromaffin-vesicle membrane. This also demonstrates the potential usefulness of the electron transfer driven membrane potential for studying energy-linked processes in this membrane.  相似文献   

19.
Proton translocation in the catalytic cycle of cytochrome c oxidase (CcO) proceeds sequentially in a four-stroke manner. Every electron donated by cytochrome c drives the enzyme from one of four relatively stable intermediates to another, and each of these transitions is coupled to proton translocation across the membrane, and to uptake of another proton for production of water in the catalytic site. Using cytochrome c oxidase from Paracoccus denitrificans we have studied the kinetics of electron transfer and electric potential generation during several such transitions, two of which are reported here. The extent of electric potential generation during initial electron equilibration between CuA and heme a confirms that this reaction is not kinetically linked to vectorial proton transfer, whereas oxidation of heme a is kinetically coupled to the main proton translocation events during functioning of the proton pump. We find that the rates and amplitudes in multiphase heme a oxidation are different in the OH-->EH and PM-->F steps of the catalytic cycle, and that this is reflected in the kinetics of electric potential generation. We discuss this difference in terms of different driving forces and relate our results, and data from the literature, to proposed mechanisms of proton pumping in cytochrome c oxidase.  相似文献   

20.
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号