首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The internal elastic lamina (IEL), which separates the arterial intima from the media, affects macromolecular transport across the medial layer. In the present study, we have developed a two-dimensional numerical simulation model to resolve the influence of the IEL on convective-diffusive transport of macromolecules in the media. The model considers interstitial flow in the medial layer that has a complex entrance condition because of the presence of leaky fenestral pores in the IEL. The IEL was modeled as an impermeable barrier to both water and solute except for the fenestral pores that were assumed to be uniformly distributed over the IEL. The media were modeled as a heterogeneous medium composed of an array of smooth muscle cells (SMCs) embedded in a continuous porous medium representing the interstitial proteoglycan and collagen fiber matrix. Results for ATP and low-density lipoprotein (LDL) demonstrate a range of interesting features of molecular transport and uptake in the media that are determined by considering the balance among convection, diffusion, and SMC surface reaction. The ATP concentration distribution depends strongly on the IEL pore structure because ATP fluid-phase transport is dominated by diffusion emanating from the fenestral pores. On the other hand, LDL fluid-phase transport is only weakly dependent on the IEL pore structure because convection spreads LDL laterally over very short distances in the media. In addition, we observe that transport of LDL to SMC surfaces is likely to be limited by the fluid phase (surface concentration less than bulk concentration), whereas ATP transport is limited by reaction on the SMC surface (surface concentration equals bulk concentration).  相似文献   

2.
Interstitial flow through the tunica media of an artery wall in the presence of the internal elastic lamina (IEL), which separates it from the subendothelial intima, has been studied numerically. A two-dimensional analysis applying the Brinkman model as the governing equation for the porous media flow field was performed. In the numerical simulation, the IEL was modeled as an impermeable barrier to water flux, except for the fenestral pores, which were uniformly distributed over the IEL. The tunica media was modeled as a heterogeneous medium composed of a periodic array of cylindrical smooth muscle cells (SMCs) embedded in a fiber matrix simulating the interstitial proteoglycan and collagen fibers. A series of calculations was conducted by varying the physical parameters describing the problem: the area fraction of the fenestral pore (0. 001-0.036), the diameter of the fenestral pore (0.4-4.0 microm), and the distance between the IEL and the nearest SMC (0.2-0.8 microm). The results indicate that the value of the average shear stress around the circumference of the SMC in the immediate vicinity of the fenestral pore could be as much as 100 times greater than that around an SMC in the fully developed interstitial flow region away from the IEL. These high shear stresses can affect SMC physiological function.  相似文献   

3.
4.
Although there are a number of studies on vasospastic angina, the structural changes at the cellular level that occur in the coronary arterial wall during spasm are not well known. Coronary spasm was induced by brushing the coronary adventitia in nine anesthetized beagles, and structural changes in the spastic coronary segments were examined by light and electron microscopy, making comparisons with the adjacent nonspastic segments. The % diameter stenosis of the spastic segments as measured angiographically was 79.4±12% (mean±SD). Light microscopic changes in the spastic and nonspastic segments were as follows: medial thickness 1,512 vs. 392 μm (P<0.0001) and % diameter and % area stenoses of spastic segment 81.0% and 96.5%, respectively, indicating that spasm was induced by medial thickening. Circular smooth muscle cells (SMCs) in the media were arranged in parallel with the internal (IEL) and external (EEL) elastic lamina in nonspastic segments but radially rearranged in spastic segments. SMCs were classified by their patterns of connection to IEL into six types by electron microscopy. Of these, three contracted and pulled the IEL toward the EEL, causing folding of the IEL and waving of EEL resulting in thickening of the media and narrowing of the lumen. We conclude that coronary spasm was elicited by radial rearrangement of the medial SMCs due to their own contraction and resultant medial thickening and folding of IEL, creating a piston effect to narrow the lumen, i.e., spasm.  相似文献   

5.
The transport of macromolecules, such as low density lipoproteins (LDLs), across the artery wall and their accumulation in the wall is a key step in atherogenesis. Our objective was to model fluid flow within both the lumen and wall of a constricted, axisymmetric tube simulating a stenosed artery, and to then use this flow pattern to study LDL mass transport from the blood to the artery wall. Coupled analysis of lumenal blood flow and transmural fluid flow was achieved through the solution of Brinkman's model, which is an extension of the Navier-Stokes equations for porous media. This coupled approach offers advantages over traditional analyses of this problem, which have used possibly unrealistic boundary conditions at the blood-wall interface; instead, we prescribe a more natural pressure boundary condition at the adventitial vasa vasorum, and allow variations in wall permeability due to the occurrence of plaque. Numerical complications due to the convection dominated mass transport process (low LDL diffusivity) are handled by the streamline upwind/Petrov-Galerkin (SUPG) finite element method. This new fluid-plus-porous-wall method was implemented for conditions typical of LDL transport in a stenosed artery with a 75 percent area reduction (Peclet number=2 x 10(8)). The results show an elevated LDL concentration at the downstream side of the stenosis. For the higher Darcian wall permeability thought to occur in regions containing atheromatous lesions, this leads to an increased transendothelial LDL flux downstream of the stenosis. Increased transmural filtration in such regions, when coupled with a concentration-dependent endothelial permeability to LDL, could be an important contributor to LDL infiltration into the arterial wall. Experimental work is needed to confirm these results.  相似文献   

6.
7.
Huang et al. (1997) propose a new hypothesis and develop a mathematical model to explain rationally the in vitro and in situ measured changes (Tedgui and Lever, 1984; Baldwin and Wilson, 1993) in the hydraulic conductivity of the artery wall of rabbit aorta with transmural pressure. The model leads to the intriguing prediction that this hydraulic conductivity would decrease by one half if the thin intimal layer between the endothelium and the internal elastic lamina volume-compresses approximately fivefold. This paper presents the first measurements of the effect of transmural pressure on intimal layer thickness and shows that the intimal matrix is, indeed, surprisingly compressible. We perfusion-fixed rat thoracic aortas in situ with 2 percent glutaraldehyde solution at 0, 50, 100, or 150 mm Hg lumen pressure and sectioned for light and electron microscopic observations. Electron micrographs show a dramatic, nonlinear decrease in average intimal thickness, i.e., 0.62 +/- 0.26, 0.27 +/- 0.14, 0.15 +/- 0.10, and 0.12 +/- 0.07 (SD) micron for 0, 50, 100, and 150 mm Hg lumen pressure, respectively. The volume strain of the intima is more than 20 times greater than the radial strain of the artery wall due to hoop tension and two orders of magnitude greater than the consolidation of the artery wall as a whole assuming constant medial density (Chuong and Fung, 1984). Moreover, in both light and electron microscopic observations, it is easy to find numerous sites where the endothelium puckers into the fenestral pores at high lumen pressure, as predicted by the theory in Huang et al. (1997). In contrast, the average diameter of a fenestral pore increases only 10 percent as the lumen pressure is increased from 0 to 150 mm Hg. These results indicate that the thin intimal layer comprising less than 1 percent of the wall thickness can have a profound effect on the filtration properties of the wall due to the large change in Darcy permeability of the layer and the large reduction in the entrance area of the flow entering the fenestral pores, though the pores themselves experience only a minor enlargement due to hoop tension.  相似文献   

8.
During the development of atherosclerotic and fibromuscular proliferates/lesions, smooth muscle cells (SMC) in the media, particularly near the lumen, are activated to migrate into the intima, where they continue to proliferate to form an intimal thickening. It is to date unclear whether SMCs situated adjacent to the adventitia possess a lower capacity to proliferate because they are a special subpopulation of medial SMCs or because the adventitia excerts an inhibitory effect. We have, therefore, developed an in vitro system whereby we have attempted to clear up this uncertainty. The following observations were made from the in vitro experiments: Media-explants from rabbit aorta were laid on a polycarbonate filter with pores 5 microns in diameter. The SMCs migrated through the pores and formed a fibromuscular proliferate on the other side of the filter. Endothelial cells were seeded on one side of the filter before media-explants were laid on the other side of the filter. The confluent endothelium inhibited migration of SMCs through the filter pores. Media-explants were placed between two polycarbonate filters (pores 5 microns diameter). In this "sandwich" arrangement SMCs migrated through both filters, i.e., in both directions. The quantity of migrating and proliferating cells through both filters was almost identical. This suggests that there is no difference in the migratory and proliferative capacity of SMCs in the inner and outer layers in the media of arteries. To investigate the influence of the adventitia on medial SMCs, media-explants were placed between a lower (5 microns) and an upper (0.2 micron) filter. On the 0.2 micron filter adventitia-explants were laid above the media-explants. The 0.2 micron filter prevented migration of SMCs from the media-explant into the adventitia and migration of fibroblasts from the adventitia into the media. Interestingly, the adventitial tissue inhibited proliferation of SMCs at the abluminal and migration and proliferation at the luminal side of the media-explant; the number of cells migrating through the 5 microns pores at the luminal side was diminished, suggesting that the adventitial tissue has an antiproliferative influence on SMCs. Moreover, it was found that in media-explants near the filter with adventitia, the medial SMCs were in a better preserved condition than at the de-endothelialised luminal side. As a control, cultures consisting of media-explants were incubated without filters (i.e., explant organ cultures). The proliferates in the concavity (luminal side) exhibited a pattern of proliferating SMCs different from that of the cells at the abluminal convexity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A microcarrier co-culture system for aortic endothelial cells and smooth muscle cells (SMCs) was developed as a model for metabolic interactions between cells of the vessel wall. Low density lipoprotein (LDL) metabolism in SMCs was significantly influenced by co-culture with endothelium. The numbers of high affinity receptors for LDL was increased more than twofold (range, 2.1-5.6), with concomitant increases in LDL receptor-mediated endocytosis and degradation. These effects reached a plateau at an endothelial cell/SMC ratio of 1. Kinetic analysis of the endocytic pathway for LDL in SMCs indicated that, in co-culture with endothelium, there was no alteration in the binding affinity of LDL to its receptors but that the internalization rate constant declined and the rate constant for degradation increased. This analysis suggested that the formation and migration of endocytic vesicles was the rate-limiting step of enhanced LDL metabolism under co-culture conditions. Two mechanisms by which endothelial cells influenced smooth muscle LDL metabolism were identified. First, mitogen(s) derived from endothelial cells stimulated entry of SMCs into the growth cycle, and the changes in LDL metabolism occurred as a consequence of G1-S transition. Second, SMC lipoprotein metabolism was stimulated in the absence of mitogens by a low molecular weight (less than 3,500) factor or factors. Co-culture was a required condition for the latter effect, suggesting that the mediator(s) may be unstable or that cell-cell communication was necessary for expression. These results (a) demonstrate that vascular cell interactions can modify LDL metabolism in SMCs, (b) provide some insights into the mechanisms responsible, and (c) identify co-culture as an experimental approach appropriate to certain aspects of vascular cell biology.  相似文献   

10.
《The Journal of cell biology》1983,96(6):1677-1689
We investigated the interaction and transport of low-density lipoprotein (LDL) through the arterial endothelium in rat aorta and coronary artery, by perfusing in situ native, untagged human, and rat LDL. The latter was rendered electron-opaque after it interacted with the endothelial cell and was subsequently fixed within tissue. We achieved LDL electron-opacity by an improved fixation procedure using 3,3'-diaminobenzidine, and mordanting with tannic acid. The unequivocal identification of LDL was implemented by reacting immunocytochemically the perfused LDL with anti LDL-horseradish peroxidase conjugate. Results indicate that LDL is taken up and internalized through two parallel compartmented routes. (a) A relatively small amount of LDL is taken up by endocytosis via: (i) a receptor-mediated process (adsorptive endocytosis) that involved coated pits/vesicles, and endosomes, and, probably, (ii) a receptor-independent process (fluid endocytosis) carried out by a fraction of plasmalemmal vesicles. Both mechanisms bringing LDL to lysosomes supply cholesterol to the endothelial cell itself. (b) Most circulating LDL is transported across the endothelial cell by transcytosis via plasmalemmal vesicles which deliver LDL to the other cells of the vessel wall. Endocytosis is not enhanced by increasing LDL concentration, but the receptor-mediated internalization decreases at low temperature. Transcytosis is less modified by low temperature but is remarkably augmented at high concentration of LDL. While the endocytosis of homologous (rat) LDL is markedly more pronounced than that of heterologous (human) LDL, both types of LDL are similarly transported by transcytosis. These results indicate that the arterial endothelium possesses a dual mechanism for handling circulating LDL: by a high affinity process, endocytosis secures the endothelial cells' need for cholesterol; by a low-affinity nonsaturable uptake process, transcytosis supplies cholesterol to the other cells of the vascular wall, and can monitor an excessive accumulation of plasma LDL. Since in most of our experiments we used LDL concentrations above those found in normal rats, we presume that at low LDL concentrations saturable high-affinity uptake would be enhanced in relation to nonsaturable pathways.  相似文献   

11.
Atherosclerosis is a lipid disease characterized by accumulation of low density lipoprotein (LDL) in the artery wall. The transport of LDL across the endothelium of coronary artery is an initiating event of atherosclerosis, whose mechanism remains poorly understood. In the last decade, it has been shown that in caveolin-1 (Cav-1) deficient mice, LDL infiltration in aorta wall is decreased and CD36 expression in aortas is down-regulated, leading to regression of atherosclerotic lesions. In the present study, we show that native LDL endocytosis is decreased in endothelial cells deficient in Cav-1 or CD36. We demonstrate that Cav-1 and CD36 interact in caveolae-rich domains by different biochemical approaches. In addition, confocal microscopy reveals some colocalization of Cav-1 with CD36. These findings indicate that caveolae and CD36 are involved in native LDL endocytosis and suggest that CD36 might be a good candidate for the transport of native LDL across the endothelium, an early event in atherosclerosis.  相似文献   

12.
Hypercholesterolemia induces increased transcytosis and accumulation of plasma lipoproteins in the arterial intima, where they interact with matrix proteins and become modified and reassembled lipoproteins. Chondroitin 6-sulfate-modified LDL (CS-mLDL) induces migration, proliferation, and lipid accumulation in human aortic smooth muscle cells (SMCs). To search for the mechanism(s) responsible for lipid accumulation, cultured SMC and macrophages were exposed to CS-mLDL, minimally modified LDL (mmLDL), and native LDL (as a control). Then the cellular uptake, degradation and expression of the LDL receptor (LDL-R) was determined using radioiodinated ligands, ACAT activity assay, fluorescence microscopy and RT-PCR. The uptake of CS-mLDL was 2-fold higher in SMC and 3-to 4-fold higher in macrophages as compared to LDL and mmLDL; the lysosomal degradation of CS-mLDL was slower in SMCs and considerably diminished in macrophages. Compared with LDL, CS-mLDL induced increased synthesis and accumulation of esterified cholesterol in SMCs (∼2-fold) and macrophages (∼10-fold) within an expanded acidic compartment. CS-mLDL and mmLDL down-regulate the gene expression of the LDL-R in the both cell types. Mechanisms of CS-mLDL-induced lipid accumulation in SMC and macrophages involve increased cellular uptake, and diminished cellular degradation that stimulates cholesterol ester synthesis and accumulation in cytoplasmic inclusions and in the lysosomal compartment in an undegraded form; modified lipoproteins induce down-regulation of LDL-R.  相似文献   

13.
Hypertension, a risk factor for atherosclerosis, increases the uptake of low density lipoproteins (LDL) by the arterial wall. Our objective in this work was to use computational modeling to identify physical factors that could be partially responsible for this effect. Fluid flow and mass transfer patterns in the lumen and wall of an arterial model were computed in a coupled manner, replicating as closely as possible previous experimental studies in which LDL uptake into the artery wall was measured in straight, excised arterial segments. Under conditions of both flow and no-flow, simulations predicted an increase in concentration polarization of LDL at the artery wall when arterial pressure was increased from 120 to 160 mmHg. However, this led to only a slight increase in mean LDL concentration within the arterial wall. However, if the permeability of the endothelium to LDL was allowed to vary with intra-arterial pressure, then the simulations predicted that the uptake of LDL would be enhanced 1.9-2.6 fold at higher pressure. The magnitude of this increase was consistent with experimental data. We conclude that the concentration polarization effects, enhanced by elevated intra-arterial pressure, cannot explain the increase in LDL uptake seen under hypertensive conditions. Instead, the data are most consistent with a pressure-linked increase in endothelial permeability to LDL.  相似文献   

14.
Atherosclerosis localizes at a bend andor bifurcation of an artery, and low density lipoproteins (LDL) accumulate in the intima. Hemodynamic factors are known to affect this localization and LDL accumulation, but the details of the process remain unknown. It is thought that the LDL concentration will be affected by the filtration flow, and that the velocity of this flow will be affected by deformation of the arterial wall. Thus, a coupled model of a blood flow and a deformable arterial wall with filtration flow would be invaluable for simulation of the flow field and concentration field in sequence. However, this type of highly coupled interaction analysis has not yet been attempted. Therefore, we performed a coupled analysis of an artery with multiple bends in sequence. First, based on the theory of porous media, we modeled a deformable arterial wall using a porohyperelastic model (PHEM) that was able to express both the filtration flow and the viscoelastic behavior of the living tissue, and simulated a blood flow field in the arterial lumen, a filtration flow field and a displacement field in the arterial wall using a fluid-structure interaction (FSI) program code by the finite element method (FEM). Next, based on the obtained results, we further simulated LDL transport using a mass transfer analysis code by the FEM. We analyzed the PHEM in comparison with a rigid model. For the blood flow, stagnation was observed downward of the bends. The direction of the filtration flow was only from the lumen to the wall for the rigid model, while filtration flows from both the wall to the lumen and the lumen to the wall were observed for the PHEM. The LDL concentration was high at the lumenwall interface for both the PHEM and rigid model, and reached its maximum value at the stagnation area. For the PHEM, the maximum LDL concentration in the wall in the radial direction was observed at the position of 3% wall thickness from the lumenwall interface, while for the rigid model, it was observed just at the lumenwall interface. In addition, the peak LDL accumulation area of the PHEM moved about according to the pulsatile flow. These results demonstrate that the blood flow, arterial wall deformation, and filtration flow all affect the LDL concentration, and that LDL accumulation is due to stagnation and the presence of filtration flow. Thus, FSI analysis is indispensable.  相似文献   

15.
Concentration polarization of atherogenic lipids in the arterial system   总被引:2,自引:0,他引:2  
Nomenclature c, Normalized LDL concentration (C*/C0); C0, incoming (bulk) LDL concentration (gr/cm3); Cw, LDL concentration on the luminal surface (gr/cm3); ,wC time average value of LDL concentration on the luminal surface (gr/cm3); D, diffusion coef-ficient of LDL (cm2/s); Q, blood flow rate (mL/s); 0R, average internal radius of the artery (cm); Re, Reynolds number (002/Run); Sc, Schmidt number (/Dn); t, normalized time (00*/tuR); u, normalized axial velocity (0*/uu); 0u, time a…  相似文献   

16.
Apolipoprotein A-I (apoA-I) and an apoA-I peptide mimetic removed seeding molecules from human low density lipoprotein (LDL) and rendered the LDL resistant to oxidation by human artery wall cells. The apoA-I-associated seeding molecules included hydroperoxyoctadecadienoic acid (HPODE) and hydroperoxyeicosatetraenoic acid (HPETE). LDL from mice genetically susceptible to fatty streak lesion formation was highly susceptible to oxidation by artery wall cells and was rendered resistant to oxidation after incubation with apoA-I in vitro. Injection of apoA-I (but not apoA-II or murine serum albumin) into mice rendered their LDL resistant to oxidation within 3 h. Infusion of apoA-I into humans rendered their LDL resistant to oxidation within 6 h.We conclude that 1) oxidation of LDL by artery wall cells requires seeding molecules that include HPODE and HPETE; 2) LDL from mice genetically susceptible to atherogenesis is more readily oxidized by artery wall cells; and 3) normal HDL and its components can remove or inhibit the activity of lipids in freshly isolated LDL that are required for oxidation by human artery wall cells.  相似文献   

17.
The effects of fluid-structure interactions (FSI) and pulsation on the transport of low-density lipoprotein (LDL) through an arterial wall are analyzed in this work. To this end, a comprehensive multi-layer model for both LDL transport as well as fluid-structure interaction (FSI) is introduced. The constructed model is analyzed and compared with the existing results in the limiting cases. Excellent agreement is found between the presented model and the existing results in the limiting cases. The presented model takes into account the complete multi-layered LDL transport while incorporating the FSI aspects to enable a comprehensive study of the deformation effect on the pertinent parameters of the transport processes within an artery. Since the flow inside an artery is time-dependent, the impact of pulsatile flow is also analyzed with and without FSI. A detailed analysis is presented to illustrate the consequence of different factors on the LDL transport in an artery.  相似文献   

18.
In an attempt to investigate the effects of transmural pressure on LDL transport and distribution across the arterial wall, uptake of labeled LDL has been measured in excised rabbit thoracic aorta, held at in vivo length and pressurized to 70 or 160 mmHg. The transmural distribution of LDL concentration across the wall was determined by examining serial frozen sections cut parallel to the luminal surface at 20 microns intervals from the intima to adventitia. The LDL concentration observed in the first luminal section at 160 mmHg was 20-fold higher than that obtained at 70 mmHg. The LDL concentrations decreased in the subsequent sections of the first half of the media and became similar, in the outer half of the media, to the values observed under normal pressure. These results might provide an account of one of the mechanisms involved in the deleterious effects of hypertension in atherogenesis.  相似文献   

19.
Artery segments were microdissected from distal acini of the rat lung and studied by light and electron microscopy. Morphometric methods were used to quantify the structure of the wall at defined levels within the normal axial pathway and to determine the changes after 5 and 7 days of whole-animal exposure to hypobaric hypoxia at an inspiratory O2 fraction of 0.1. In the normal lung, at the level of the terminal bronchiolus, the artery wall comprised up to six layers of smooth muscle cells (SMCs). At the respiratory bronchiolar level, however, the wall contained fewer than two layers of SMCs with a consistently circumferential orientation. By the second-generation alveolar ducts (AD2), the medial layer was lost, replaced by subendothelial precursor smooth muscle cells (PCs) resembling intermediate cells. At this and the next level (AD3), the PC layer was often circumferentially discontinuous. Regression analysis of the morphometric data suggested, however, that the smallest AD3 artery is likely to have a layer of PCs but with virtually no measurable separation between them and the endothelium. The mean maximum radial diameter of SMCs decreased along the axial pathway with a significant difference between diameters at terminal bronchiolus and AD2 levels; yet the diameter of endothelial cells remained the same. After 7 days of hypoxia, no change was noted in the number of smooth muscle layers, but at the AD2 level the relative area of media in the total wall increased. This was due in part to hypertrophy of PCs, as evidenced by an increase in their mean maximum radial diameter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The transport of atherogenic lipids (LDL) in a straight segment of an artery with a semi-permeable wall was simulated numerically. The numerical analysis predicted that a mass transport phenomenon called ’concentration polarization’ of LDL might occur in the arterial system. Under normal physiological flow conditions, the luminal surface LDL concentration was 5%–14% greater than the bulk concentration in a straight segment of an artery. The luminal surface LDL concentration at the arterial wall was flow-dependent, varying linearly with the filtration rate across the arterial wall and inversely with wall shear rate. At low wall shear rate, the luminal surface LDL concentration was very sensitive to changes in flow conditions, decreasing sharply as wall shear rate increased. In order to verify the numerical analysis, the luminal surface concentration of bovine serum albumin (as a tracer macromolecule) in the canine carotid artery was measured in vitro by directly taking liquid samples from the luminal surface of the artery. The experimental result was in very good agreement with the numerical analysis. The authors believe that the mass transport phenomenon of ‘concentration polarization’ may indeed exist in the human circulation and play an important role in the localization of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号