首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2(-/-) mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin.  相似文献   

2.
Differentiation of human neural progenitors into neuronal and glial cell types offers a model to study and compare molecular regulation of neural cell lineage development. In vitro expansion of neural progenitors from fetal CNS tissue has been well characterized. Despite the identification and isolation of glial progenitors from adult human sub-cortical white matter and development of various culture conditions to direct differentiation of fetal neural progenitors into myelin producing oligodendrocytes, acquiring sufficient human oligodendrocytes for in vitro experimentation remains difficult. Differentiation of galactocerebroside+ (GalC) and O4+ oligodendrocyte precursor or progenitor cells (OPC) from neural precursor cells has been reported using second trimester fetal brain. However, these cells do not proliferate in the absence of support cells including astrocytes and neurons, and are lost quickly over time in culture. The need remains for a culture system to produce cells of the oligodendrocyte lineage suitable for in vitro experimentation.Culture of primary human oligodendrocytes could, for example, be a useful model to study the pathogenesis of neurotropic infectious agents like the human polyomavirus, JCV, that in vivo infects those cells. These cultured cells could also provide models of other demyelinating diseases of the central nervous system (CNS). Primary, human fetal brain-derived, multipotential neural progenitor cells proliferate in vitro while maintaining the capacity to differentiate into neurons (progenitor-derived neurons, PDN) and astrocytes (progenitor-derived astrocytes, PDA) This study shows that neural progenitors can be induced to differentiate through many of the stages of oligodendrocytic lineage development (progenitor-derived oligodendrocytes, PDO). We culture neural progenitor cells in DMEM-F12 serum-free media supplemented with basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF-AA), Sonic hedgehog (Shh), neurotrophic factor 3 (NT-3), N-2 and triiodothyronine (T3). The cultured cells are passaged at 2.5e6 cells per 75cm flasks approximately every seven days. Using these conditions, the majority of the cells in culture maintain a morphology characterized by few processes and express markers of pre-oligodendrocyte cells, such as A2B5 and O-4. When we remove the four growth factors (GF) (bFGF, PDGF-AA, Shh, NT-3) and add conditioned media from PDN, the cells start to acquire more processes and express markers specific of oligodendrocyte differentiation, such as GalC and myelin basic protein (MBP). We performed phenotypic characterization using multicolor flow cytometry to identify unique markers of oligodendrocyte.  相似文献   

3.
Survival and differentiation of oligodendrocytes are important for the myelination of central nervous system (CNS) axons during development and crucial for myelin repair in CNS demyelinating diseases such as multiple sclerosis. Here we show that death receptor 6 (DR6) is a negative regulator of oligodendrocyte maturation. DR6 is expressed strongly in immature oligodendrocytes and weakly in mature myelin basic protein (MBP)-positive oligodendrocytes. Overexpression of DR6 in oligodendrocytes leads to caspase 3 (casp3) activation and cell death. Attenuation of DR6 function leads to enhanced oligodendrocyte maturation, myelination and downregulation of casp3. Treatment with a DR6 antagonist antibody promotes remyelination in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE) models. Consistent with the DR6 antagoinst antibody studies, DR6-null mice show enhanced remyelination in both demyelination models. These studies reveal a pivotal role for DR6 signaling in immature oligodendrocyte maturation and myelination that may provide new therapeutic avenues for the treatment of demyelination disorders such as multiple sclerosis.  相似文献   

4.
Regulation of oligodendrocyte development   总被引:7,自引:0,他引:7  
Oligodendrocytes are the cells responsible for the formation of myelin in the central nervous system. Recent studies demonstrated that cells of the oligodendrocyte lineage initially arise in distinct regions of the ventricular zone during early development. These cells or their progeny migrate to developing white matter tracts where they undergo the majority of their proliferation and subsequently differentiate into myelinating cells. Oligodendrocyte-precursor cell proliferation is regulated by a number of distinct growth factors that act at distinct stages in the lineage and the final number of oligodendrocytes in any region of the CNS is regulated by local influences. A density-dependent feedback inhibition of proliferation reduces the responsiveness of the cells to their growth factors and the final matching of oligodendrocyte and axon number is accomplished through the local regulation of cell death. In this review, we discuss the major factors that regulate three distinct stages in the development of the oligodendrocyte lineage: The initial induction of oligodendrocyte progenitors, the regulation of expansion and dispersion of the committed precursor cell population, and the final regulation of oligodendrocyte precursor number through the local inhibition of oligodendrocyte precursor proliferation and cell death.  相似文献   

5.
The 4e transgenic mouse is characterized by overexpression of the PLP gene. Heterozygous littermates containing three PLP gene copies develop and myelinate normally. However, a progressive CNS demyelination begins at 3-4 months of age. Despite focal demyelination, these animals survive for one year with hind limb paralysis. We used this CNS demyelination model to determine if grafts of CG4 oligodendrocyte progenitors would survive and myelinate the adult CNS. Either CG4 cells, or co-grafts of CG4/B104 cells 11:1 ratio respectively) were performed. Grafted cells survived and migrated in the normal and transgenic brain. Non-treated transgenic animals revealed extensive lack of myelin. Three months post-transplant hosts with CG4 or co-transplants displayed a near normal myelin pattern. Double immunofluorescence for neurofilament and myelin basic protein revealed the presence of many naked axons in non-grafted transgenic animals. Those grafted with progenitor CG4 cells or cografts displayed a clear increase in remyelination. This data provides a new direction for the development of cell replacement therapies in demyelinating diseases.  相似文献   

6.
FGF modulates the PDGF-driven pathway of oligodendrocyte development   总被引:24,自引:0,他引:24  
PDGF promotes the growth of oligodendrocyte type-2 astrocyte (O-2A) glial progenitor cells and allows their timely differentiation into oligodendrocytes, the CNS myelin-forming cells. We demonstrate that basic FGF is a potent mitogen for brain O-2A progenitor cells, but blocks their differentiation into oligodendrocytes. Treatment with basic FGF also influences the level of expression of PDGF receptors on O-2A progenitor cells. These cells express only the alpha chain PDGF receptor, and the levels of PDGF alpha receptors decrease as the cells differentiate. In contrast, basic FGF maintains a high level of functionally responsive PDGF alpha receptors in O-2A progenitors. Thus basic FGF activates a signaling pathway that can positively regulate PDGF receptors in O-2A progenitor cells. In this way basic FGF or an FGF-like factor may modulate the production of myelin-forming cells in the CNS.  相似文献   

7.
The formation of CNS myelin is dependent on the differentiation of oligodendrocyte precursor cells (OPCs) and oligodendrocyte maturation. How the initiation of myelination is regulated is unclear, but it is likely to depend on the development of competence by oligodendrocytes and receptivity by target axons. Here we identify an additional level of control of oligodendrocyte maturation mediated by interactions between the different cellular components of the oligodendrocyte lineage. During development oligodendrocyte precursors mature through a series of stages defined by labeling with monoclonal antibodies A2B5 and O4. Newly differentiated oligodendrocytes begin to express galactocerebroside recognized by O1 antibodies and subsequently mature to myelin basic protein (MBP)-positive cells prior to formation of compact myelin. Using an in vitro brain slice culture system that supports robust myelination, the consequences of ablating cells at different stages of the oligodendrocyte lineage on myelination have been assayed. Elimination of all OPC lineage cells through A2B5+, O4+, and O1+ complement-mediated cell lysis resulted in a delay in development of MBP cells and myelination. Selective elimination of early OPCs (A2B5+) also unexpectedly resulted in delayed MBP expression compared to controls suggesting that early OPCs contribute to the timing of myelination onset. By contrast, elimination of differentiated (O1+) immature oligodendrocytes permanently inhibited the appearance of MBP+ cells suggesting that oligodendrocytes are critical to facilitate the maturation of OPCs. These data illuminate that the presence of intra-lineage feed-forward and feedback cues are important for timely myelination by oligodendrocytes.  相似文献   

8.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

9.
Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs’ differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.  相似文献   

10.
11.
Myelin-associated inhibitors expressed following injury to the adult central nervous system (CNS) induce growth cone collapse and retraction of the axonal cytoskeleton. Myelin-associated glycoprotein (MAG) is a bi-functional molecule that promotes neuritogenesis in some immature neurons during development then becomes inhibitory to neurite outgrowth as neurons mature. Progress is being made towards the elucidation of the downstream events that regulate myelin inhibition of regeneration in neuronal populations. However it is not known how adult-derived neural stem cells or progenitors respond to myelin during neuronal differentiation and neuritogenesis. Here we examine the effect of MAG on neurons derived from an adult rat hippocampal progenitor cell line (AHPCs). We show that, unlike their developmental counterparts, AHPC-derived neurons are susceptible to MAG inhibition of neuritogenesis during differentiation and display a 57% reduction in neurite outgrowth when compared with controls. We demonstrate that this effect can be overcome (by up to 69%) by activation of the neurotrophin, cyclic AMP and protein kinase A pathways or by Rho-kinase suppression. We also demonstrate that combination of these factors enhanced neurite outgrowth from differentiating neurons in the presence of MAG. This work provides important information for the successful generation of new neurons from adult neural stem cell populations within compromised adult circuitry and is thus directly relevant to endogenous repair and regeneration of the adult CNS.  相似文献   

12.
The subventricular zone (SVZ) of the developing mammalian forebrain gives rise to astrocytes and oligodendrocytes in the neocortex and white matter, and neurons in the olfactory bulb in perinatal life. We have examined the developmental fates and spatial distributions of the descendants of single SVZ cells by infecting them in vivo at postnatal day 0-1 (P0-1) with a retroviral "library". In most cases, individual SVZ cells gave rise to either oligodendrocytes or astrocytes, but some generated both types of glia. Members of glial clones can disperse widely through the gray and white matter. Progenitors continued to divide after stopping migration, generating clusters of related cells. However, the progeny of a single SVZ cell does not differentiate synchronously: individual clones contained both mature and less mature glia after short or long intervals. For example, progenitors that settled in the white matter generated three types of clonal oligodendrocyte clusters: those composed of only myelinating oligodendrocytes, of both myelinating oligodendrocytes and non-myelinating oligodendrocytes, or of only non-myelinating cells of the oligodendrocyte lineage. Thus, some progenitors do not fully differentiate, but remain immature and may continue to cycle well into adult life.  相似文献   

13.
Simmons T  Appel B 《PloS one》2012,7(2):e32317

Background

In vertebrates, the myelin sheath is essential for efficient propagation of action potentials along the axon shaft. Oligodendrocytes are the cells of the central nervous system that create myelin sheaths. During embryogenesis, ventral neural tube precursors give rise to oligodendrocyte progenitor cells, which divide and migrate throughout the central nervous system. This study aimed to investigate mechanisms that regulate oligodendrocyte progenitor cell formation.

Methodology/Principal Findings

By conducting a mutagenesis screen in transgenic zebrafish, we identified a mutation, designated vu166, by an apparent reduction in the number of oligodendrocyte progenitor cells in the dorsal spinal cord. We subsequently determined that vu166 is an allele of pescadillo, a gene known to play a role in ribosome biogenesis and cell proliferation. We found that pescadillo function is required for both the proper number of oligodendrocyte progenitors to form, by regulating cell cycle progression, and for normal levels of myelin gene expression.

Conclusions/Significance

Our data provide evidence that neural precursors require pes function to progress through the cell cycle and produce oligodendrocyte progenitor cells and for oligodendrocyte differentiation.  相似文献   

14.
15.
16.
A Nishiyama 《Human cell》2001,14(1):77-82
There exists a significantly large population of glial cells in the mammalian central nervous system (CNS) that can be identified by the expression of the NG2 proteoglycan. Cells that express NG2 (NG2 cells) are found in the developing and mature CNS and are distinct from neurons, astrocytes, microglia, and mature oligodendrocytes. They are often referred to as oligodendrocyte progenitor cells because of their ability to differentiate into oligodendrocytes in culture. However, the observation that a large number of NG2 cells persist uniformly and ubiquitously in the adult CNS and display a differentiated morphology is not entirely consistent with the notion that NG2 cells are all oligodendrocyte progenitor cells. The role of NG2 cells in oligodendrocyte regeneration and their non-progenitor role in the mature CNS are discussed in this review.  相似文献   

17.
M Noble  K Murray 《The EMBO journal》1984,3(10):2243-2247
Optic nerves of neonatal rats contain a bipotential glial progenitor cell which can be induced by tissue culture conditions to differentiate into either an oligodendrocyte (the myelin-forming cell of the CNS) or a type 2 astrocyte (an astrocyte population found only in the myelinated tracts of the CNS). In our previous studies most oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells differentiated within 3 days in vitro with relatively little division of the progenitors or their differentiated progeny. We have now found that the O-2A progenitors are stimulated to divide in culture by purified populations of type 1 astrocytes, another glial cell-type found in the rat optic nerve. This cell-cell interaction appears to be mediated by a soluble factor(s) and results in the production of large numbers of both progenitor cells and oligodendrocytes. As type 1 astrocytes are the major glial cell-type in the optic nerve when oligodendrocytes first begin to be produced in large numbers in vivo, our results suggest that this astrocyte subpopulation may play an important role in expanding the oligodendrocyte population during normal development.  相似文献   

18.
Myelin formation is a multistep process that is controlled by a number of different extracellular factors. During the development of the central nervous system (CNS), oligodendrocyte progenitor cells differentiate into mature oligodendrocytes that start to enwrap axons with myelin membrane sheaths after receiving the appropriate signal(s) from the axon or its microenvironment. The signals required to initiate this process are unknown. Here, we show that oligodendrocytes secrete small membrane vesicles, exosome-like vesicles, into the extracellular space that inhibit both the morphological differentiation of oligodendrocytes and myelin formation. The inhibitory effects of exosome-like vesicles were prevented by treatment with inhibitors of actomyosin contractility. Importantly, secretion of exosome-like vesicles from oligodendrocytes was dramatically reduced when cells were incubated by conditioned neuronal medium. In conclusion, our results provide new evidence for small and diffusible oligodendroglial-derived vesicular carriers within the extracellular space that have inhibitory properties on cellular growth. We propose that neurons control the secretion of autoinhibitory oligodendroglial-derived exosomes to coordinate myelin membrane biogenesis.  相似文献   

19.
20.
In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号