首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The leakage of various inorganic carbon species from air-grown cells of Synechococcus UTEX 625 was investigated after a light to dark transition or during a light period using a mass spectrometer under a wide variety of experimental conditions. Total inorganic carbon efflux and CO2 efflux during the initial period of darkness were measured with or without carbonic anhydrase in the reaction medium respectively. The HCO3? efflux after a light to dark transition was estimated by difference. Carbon dioxide efflux in the light was measured by inhibiting CO2 transport with either Na2S or COS3 or quenching the 13C inorganic carbon transport by the addition of 12C inorganic carbon in excess. In cells in which CO2 fixation was inhibited, when only the HCO3? transport system was fully operative, CO2 effluxed continuously during the light period at a rate equal to about 25% of that in darkness. When only the CO2 transport system was operative, HCO3? effluxed during the light period. The difference between the light and dark efflux rates was consistent with a 0.6 unit decrease in the intracellular pH upon darkening the cells. The permeabilities of the cell for CO2 (2.94 ± 0.14 ± 10?8ms?1; mean ± SE, n=137) and HCO3? (1.4–1.7 ± 10?9 ms?1) were calculated.  相似文献   

2.
The ability of the morphologically complex cyanobacterium Chlorogloeopsis sp. ATCC 27193 to actively transport and accumulate inorganic carbon (C1= CO2+ HCO3?+ CO32?) for photosynthetic CO2 fixation was investigated. Mass-spectrometric assays revealed that Chlorogloeopsis cells grown under C1 limitation rapidly took up CO2 from the medium in a light-dependent reaction which was independent of CO2 fixation. Ethoxyzolamide, a carbonic anhydrase (CA) inhibitor, inhibited CO2 transport. Since electrometric and mass-spectrometric assays did not detect the presence of a periplasmic CA, it is suggested that CO2 transport was mediated by a CA-like activity which converted CO2 to HCO3? during passage across the membrane. Radiochemical assays, using H14CO3 as substrate, showed that C3-limited cells also had a high affinity (K0.5 HCO3?= 37 μM), Na+-independent HCO3? uptake mechanism. HCO3?uptake was light dependent and occurred against its electrochemical potential indicating a carrier-mediated, active transport process. The rate of Na+-independent HCO3? transport was sufficient to account for the steady state rate of CO2 fixation. Although not absolutely required. Na+ did specifically enhance the rate of HCO3? transport by up to 2-fold, but had no effect on the apparent affinity of the transport system for HCO3? Combined CO2 and HCO3? transport resulted in C1 accumulation as high as 25 mM and in excess of 300 times the external concentration. The C1 pool was the source of CO2 for photo-synthetic fixation and was generated, presumably, by the dehydration of HCO3? catalyzed by an intracellular CA. The collective evidence indicates that Chlorogloeopsis has a physiologically functional CO2-concentrating mechanism which is essential for photosynthesis.  相似文献   

3.
HCO3? utilization by the marine microalga Nannochloropsis oculata was investigated using a pH drift technique in a closed system. Light-dependent alkalization of the medium resulted in a final pH of 10.5, confirming substantial HCO3? use by this alga. Alkalinity remained constant throughout the pH drift. Measurement of dissolved inorganic carbon (DIC) or the uptake of H14CO3? showed that nearly 50% of the total DIC remained external to the plasma membrane on completion of a pH drift. The rate of light-driven alkalization was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and thus was dependent on photosynthesis. Light-driven alkalization was not inhibited by a membrane-impermeable inhibitor of carbonic anhydrase (CA), dcxtran-bound sulphonamide (DBS), indicating that external CA was not involved in HCO3? utilization. The anion-cxchangc inhibitor 4′,4′-diisothiocyanostilbene-2,2-disulphonic acid (DIDS) completely inhibited light-driven alkalization of the medium and H14CO3? uptake, providing unequivocal support for a direct uptake of H14CO3?. Chloride ions were essential for DIC-dependent photosynthetic oxygen evolution, suggesting that bicarbonate transport occurs by HCO3?/CI? exchange.  相似文献   

4.
Huertas IE  Espie GS  Colman B  Lubian LM 《Planta》2000,211(1):43-49
 Inorganic carbon (Ci) uptake and efflux has been investigated in the marine microalga Nannochloropsis gaditana Lubian by monitoring CO2 fluxes in cell suspensions using mass spectrometry. Addition of H13CO3 to cell suspensions in the dark caused a transient increase in the CO2 concentration in the medium far in excess of the equilibrium CO2 concentration. The magnitude of this release was dependent on the length of time the cells had been kept in the dark. Once equilibrium between the Ci species had been achieved, a CO2 efflux was observed after saturating light intensity was applied to the cells. External carbonic anhydrase (CA) was not detected nor does this species demonstrate a capacity to take up CO2 by active transport. Photosynthetic O2 evolution and the release CO2 in the dark depend on HCO3 uptake since both were inhibited by the anion exchange inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The bicarbonate uptake mechanism requires light but can also continue for short periods in the dark. Ethoxyzolamide, a CA inhibitor, markedly inhibited CO2 efflux in the dark, indicating that CO2 efflux was dependent upon the intracellular dehydration of HCO3 . These results indicate that Nannochloropsis possesses a bicarbonate uptake system which causes the accumulation of high intracellular Ci levels and an internal CA which maintains the equilibrium between CO2 and HCO3 and thus causes a subsequent release of CO2 to the external medium. Received: 20 September 1999 / Accepted: 25 October 1999  相似文献   

5.
The bloom‐forming cyanobacterium Microcystis aeruginosa (Kütz.) Kütz. 854 was cultured with 1.05 W · m?2 ultraviolet‐B radiation (UVBR) for 3 h every day, and the CO2‐concentrating mechanism (CCM) within this species as well as effects of UVBR on its operation were investigated. Microcystis aeruginosa 854 possessed at least three inorganic carbon transport systems and could utilize external HCO3? and CO2 for its photosynthesis. The maximum photosynthetic rate was approximately the same, but the apparent affinity for dissolved inorganic carbon was significantly decreased from 74.7 μmol · L?1 in the control to 34.7 μmol · L?1 in UVBR‐treated cells. At 150 μmol · L?1 KHCO3 and pH 8.0, Na+‐dependent HCO3? transport contributed 43.4%–40.2% to the photosynthesis in the control and 34.5%–31.9% in UVBR‐treated cells. However, the contribution of Na+‐independent HCO3? transport increased from 8.7% in the control to 18.3% in UVBR‐treated cells. The contribution of CO2‐uptake systems showed little difference: 47.9%–51.0% in the control and 49.8%–47.2% in UVBR‐treated cells. Thus, the rate of total inorganic carbon uptake was only marginally affected, although UVBR had a differential effect on various inorganic carbon transporters. However, the number of carboxysomes in UVBR‐treated cells was significantly decreased compared to that in the control.  相似文献   

6.
Rates of photosynthesis by the marine macroalga Ulva lactuca were measured in a factorial experiment at five concentrations of HCO3? and CO32- between 0·20 and 1·26 mol m?3, but very low concentrations of CO2. The results demonstrated that HCO3? was available for use, but an analysis of variance showed that CO32- had neither an inhibiting nor a stimulating effect on rates of photosynthesis over this concentration range. Over the experiment, pH varied from 8·46 to 10·06 and this also had no significant effect on rates of photosynthesis. The lack of a stimulatory effect of high concentrations of CO32- on the rate of photosynthesis at low concentrations of HCO3? was taken as circumstantial evidence for direct uptake of HCO3? rather than proton extrusion and external production of CO2. In the rockpools in which U. lactuca grows, pH values up to 10·35 have been recorded, and for much of the time, CO32- was the major form of inorganic carbon available. The apparent lack of an ability to use CO32- under these conditions suggests that direct use of CO32- as a source of inorganic carbon for photosynthesis is unlikely to be widespread.  相似文献   

7.
Inorganic carbon acquisition has been investigated in the marine haptophyte Isochrysis galbana. External carbonic anhydrase (CA) was present in air‐grown (0.034% CO2) cells but completely repressed in high (3%) CO2‐grown cells. External CA was not inhibited by 1.0 mM acetazolamide. The capacity of cells to take up bicarbonate was examined by comparing the rate of photosynthetic O2 evolution with the calculated rate of spontaneous CO2 supply; at pH 8.2 the rates of O2 evolution exceeded the CO2 supply rate 14‐fold, indicating that this alga was able to take up HCO3 ? . Monitoring CO2 concentrations by mass spectrometry showed that suspensions of high CO2‐grown cells caused a rapid drop in the extracellular CO2 in the light and addition of bovine CA raised the CO2 concentration by restoring the HCO3 ? ‐CO2 equilibrium, indicating that cells were maintaining the CO2 in the medium below its equilibrium value during photosynthesis. A rapid increase in extracellular CO2 concentration occurred on darkening the cells, indicating that the cells had accumulated an internal pool of unfixed inorganic carbon. Active CO2 uptake was blocked by the photosynthetic electron transport inhibitor 3‐(3′,4′‐dichlorphenyl)‐1,1‐dimethylurea, indicating that CO2 transport was supported by photosynthetic reactions. These results demonstrate that this species has the capacity to take up HCO3 ? and CO2 actively as sources of substrate for photosynthesis and that inorganic carbon transport is not repressed by growth on high CO2, although external CA expression is regulated by CO2 concentration.  相似文献   

8.
As previously described, the absolute rate of photosynthesis due to a limited concentration of dissolved inorganic carbon at alkaline pH, where the rate of CO2 formation is strictly limited, plotted as a function of chlorophyll (Chl) concentration, will take the form of a rectangular hyperbola combined with a linear rate directly proportional to [Chl], which are, respectively, due to the contribution of CO2 and HCO3 to photosynthesis. This model represents that the mathematical asymptote of absolute rate of photosynthesis versus cell density is described by the whole-cell rate constant for HCO3 uptake and the maximum rate of CO2 formation in the extracellular space. This means that any trace modification of the CO2 formation rate outside the cell will alter the photosynthetic rate and should be detectable experimentally. In air-grown Chlorella ellipsoidea and C. kessleri and in high CO2-grown C. saccharophila, the graph of the absolute rate of photosynthesis against [Chl] clearly followed the mathematical model described above and the actual CO2 formation rates outside the cells were not significantly different from the calculated rates. It also indicated that the whole-cell rate constants for CO2 and HCO3 uptake in air-grown C. ellipsoidea and C. saccharophila were similar at ≈ 300 and 2·0 mm3μg–1 Chl min–1, respectively, whereas those in air-grown C. kessleri were ≈ 550 and 15 mm3μg–1 Chl min–1. These results indicate that no acidification of the periplasmic space occurs, and there is no trace activity of external carbonic anhydrase in these microalgae.  相似文献   

9.
Mass spectromelry has been used to investigate the uptake of CO2 by two marine diatoms, Phaeodactylum tricornutum and Cyclotella sp. The time course of CO2 formation in the dark after addition of 100 mmol m?3 dissolved inorganic carbon (DIC) to cell suspensions showed that external carbonic anhydrase (CA) was not present in cells of P. tricornutum but was present in Cyclotella sp. In the absence of external CA, or when it was inhibited by 5 mmol m?3 acetazolamide, cells of both species preincubated with 100 mmol m?3 DIG rapidly depleted almost all of the free CO2 (3·2mmol m?31 at pH7·5) from the suspending medium within seconds of illumination and prior to the onset of steady-state photosynthesis. Addition of bovine CA quickly restored the HCO3?–CO2 equilibrium in the medium, indicating that the initial depletion of CO2 resulted from the selective uptake of CO2 rather than uptake of all DIG species. Transfer of cells to the dark caused a rapid increase in the CO2 concentration in the medium, largely as a result of the efflux of unfixed inorganic carbon from the cells. The measured CO2 uptake rates for both species accounted for 50% of the total DIG uptake at HCO3?–CO2 equilibrium, indicating that HCOHCO3? was also being taken up. These results indicate that both Phaeodactylum tricornutum and Cyclotella sp. have the capacity to transport CO2 actively against concentration and pH gradients.  相似文献   

10.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

11.
Some physiological characteristics of photosynthetic inorganic carbon uptake have been examined in the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Both species demonstrated a high affinity for inorganic carbon in photosynthesis at pH7.5, having K1/2(CO2) in the range 1.0 to 4.0mmol m?3 and O2? and temperature-insensitive CO2 compensation concentrations in the range 10.8 to 17.6 cm3 m?3. Intracellular accumulation of inorganic carbon was found to occur in the light; at an external pH of 7.5 the concentration in P. tricornutum was twice, and that in Cyclotella 3.5 times, the concentration in the suspending medium. Carbonic anhydrase (CA) was detected in intact Cyclotella cells but not in P. tricornutum, although internal CA was detected in both species. The rates of photosynthesis at pH 8.0 of P. tricornutum cells and Cyclotella cells treated with 0.1 mol m?3 acetazolamide, a CA inhibitor, were 1.5- to 5-fold the rate of CO2 supply, indicating that both species have the capacity to take up HCO3? as a source of substrate for photosynthesis. No Na+ dependence for HCO3? could be detected in either species. These results indicate that these two marine diatoms have the capacity to accumulate inorganic carbon in the light as a consequence, in part, of the active uptake of bicarbonate.  相似文献   

12.
The occurrence of an active CO2 transport system and of carbonic anhydrase (CA) has been investigated by mass spectrometry in the marine, unicellular rhodophyte Porphyridium cruentum (S.F. Gray) Naegeli and two marine chlorophytes Nannochloris atomus Butcher and Nannochloris maculata Butcher. Illumination of darkened cells incubated with 100 μM H13CO3? caused a rapid initial drop, followed by a slower decline in the extracellular CO2 concentration. Addition of bovine CA to the medium raised the CO2 concentration by restoring the HCO3?–CO2 equilibrium, indicating that cells were taking up CO2 and were maintaining the CO2 concentration in the medium below its equilibrium value during photosynthesis. Darkening the cell suspensions caused a rapid increase in the extracellular CO2 concentration in all three species, indicating that the cells had accumulated an internal pool of unfixed inorganic carbon. CA activity was detected by monitoring the rate of exchange of 18O from 13C18O2 into water. Exchange of 18O was rapid in darkened cell suspensions, but was not inhibited by 500 μM acetazolamide, a membrane‐impermeable inhibitor of CA, indicating that external CA activity was not present in any of these species. In all three species, the rate of exchange was completely inhibited by 500 μM ethoxyzolamide, a membrane‐permeable CA‐inhibitor, showing that an intracellular CA was present. These results demonstrate that the three species are capable of CO2 uptake by active transport for use as a carbon source for photosynthesis.  相似文献   

13.
Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short‐term photosynthetic responses of nine seagrass species from the south‐west of Australia to test species‐specific responses to enhanced CO2 and changes in HCO3?. Net photosynthesis of all species except Zostera polychlamys were limited at pre‐industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3? users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3?. Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co‐occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon.  相似文献   

14.
The processes of CO2 acquisition were characterized for the acid‐tolerant, free‐living chlorophyte alga, CPCC 508. rDNA data indicate an affiliation to the genus Coccomyxa, but distinct from other known members of the genus. The alga grows over a wide range of pH from 3.0 to 9.0. External carbonic anhydrase (CA) was detected in cells grown above pH 5, with the activity increasing marginally from pH 7 to 9, but most of the CA activity was internal. The capacity for HCO3? uptake of cells treated with the CA inhibitor acetazolamide (AZA), was investigated by comparing the calculated rate of uncatalyzed CO2 formation with the rate of photosynthesis. Active bicarbonate transport occurred in cells grown in media above pH 7.0. Monitoring CO2 uptake and O2 evolution by membrane‐inlet mass spectrometry demonstrated that air‐grown cells reduced the CO2 concentration in the medium to an equilibrium concentration of 15 μM, but AZA‐treated cells caused a drop in extracellular CO2 concentration to a compensation concentration of 27 μM at pH 8.0. CO2‐pulsing experiments with cells in the light indicated that the cells do not actively take up CO2. An internal pool of unfixed inorganic carbon was not detected at the CO2 compensation concentration, probably because of the lack of active CO2 uptake, but was detectable at times before compensation point was reached. These results indicate that this free‐living Coccomyxa possesses a CO2‐concentrating mechanism (CCM) due to an active bicarbonate‐uptake system, unlike the Coccomyxa sp. occurring in symbiotic association with lichens.  相似文献   

15.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

16.
Physiological properties of photosynthesis were determined in the marine diatom, Phaeodactylum tricornutum UTEX640, during acclimation from 5% CO2 to air and related to H2CO3 dissociation kinetics and equilibria in artificial seawater. The concentration of dissolved inorganic carbon at half maximum rate of photosynthesis (K0·5[DIC]) value in high CO2‐grown cells was 1009 mmol m ? 3 but was reduced three‐fold by the addition of bovine carbonic anhydrase (CA), whereas in air‐grown cells K0·5[DIC] was 71 mmol m ? 3, irrespective of the presence of CA. The maximum rate of photosynthesis (Pmax) values varied between 300 and 500 μ mol O2 mg Chl ? 1 h ? 1 regardless of growth pCO2. Bicarbonate dehydration kinetics in artificial seawater were re‐examined to evaluate the direct HCO3 ? uptake as a substrate for photosynthesis. The uncatalysed CO2 formation rate in artificial seawater of 31·65°/oo of salinity at pH 8·2 and 25 °C was found to be 0·6 mmol m ? 3 min ? 1 at 100 mmol m ? 3 DIC, which is 53·5 and 7·3 times slower than the rates of photosynthesis exhibited in air‐ and high CO2‐grown cells, respectively. These data indicate that even high CO2‐grown cells of P. tricornutum can take up both CO2 and HCO3 ? as substrates for photosynthesis and HCO3 ? use improves dramatically when the cells are grown in air. Detailed time courses were obtained of changes in affinity for DIC during the acclimation of high CO2‐grown cells to air. The development of high‐affinity photosynthesis started after a 2–5 h lag period, followed by a steady increase over the next 15 h. This acclimation time course is the slowest to be described so far. High CO2‐grown cells were transferred to controlled DIC conditions, at which the concentrations of each DIC species could be defined, and were allowed to acclimate for more than 36 h. The K0·5[DIC] values in acclimated cells appeared to be correlated only with [CO2(aq)] in the medium but not to HCO3 ? , CO32 ? , total [DIC] or the pH of the medium and indicate that the critical signal regulating the affinity of cells for DIC in the marine diatom, P. tricornutum, is [CO2(aq)] in the medium.  相似文献   

17.
The use of stable isotope natural abundance measurements in plant ecophysiological research is discussed in the context of studies of 13C/12C ratios in marine plants, with emphasis on the uniqueness of the information given by natural abundance measurements and of the importance of complementary data obtained by other techniques in making full use of the natural abundance data. (1) Inorganic C acquisition and assimilation in marine plants can involve diffusive entry of CO2, or the occurrence of a CO2-concentrating mechanism frequently involving active HCO3? influx. For diffusive CO2 entry, the δ13C measurements can give unique information on the fractional limitation of photosynthesis by CO2 transport which, with photosynthetic rate measurements, can be used to compute transport conductances. For active HCO3?, influx, the δ13C values uniquely permit computation of the ratio of the bidirection fluxes (influx/efflux) which, with photon yield data, can be used to given information on the mechanism of the efflux. The analyses are absolutely dependent on external (non-δ13C) data distinguishing between diffusive CO2 entry and the occurrence of a CO2 concentrating mechanism. (2) δ13C measurements on marine photolithotrophs and on members of other trophic levels collected from the sea can give unique data on food webs, with measurements of δ values for other isotopes and compositional data adding precision to the interpretations. (3) Measurements of in situδ13C values for extant marine photolithotrophs, compared with δ13C values for ancient atmospheric CO2, can give unique information on the mechanism of atmospheric CO2 draw-down at the start of glacials; other information permits more concrete conclusions to be drawn.  相似文献   

18.
Ulva lactuca, collected on the west coast of Sweden at the end of May, was able to utilize the HCO3 ? pool of seawater only through extracellular dehydration via carbonic anhydrase, followed by uptake of the CO2 formed. A decrease in the CO2 supply via this mechanism resulted in the gradual development of an additional method of HCO3 ? utilization, namely a direct uptake of HCO3 ? . Photosynthesis could then be supported by either a ‘HCO3 ? dehydration mechanism’ or a ‘HCO3 ? uptake mechanism’. Through selective inhibition of either of these mechanisms, the physiological properties of the other could be assessed. These properties suggest that the HCO3 ? uptake mechanism of U. lactuca is important under conditions when low concentrations of inorganic C, high pH and high external O2 concentrations would limit photosynthesis supported by the HCO3 ? dehydration mechanism. Such conditions may occur during intense irradiation of the alga in rockpools or in shallow bays with low rates of water exchange. The results are discussed in relation to a possible coupling between mechanisms for inorganic C acquisition and cell structure (or even morphology) of green macroalgae. They also illustrate some necessary precautions when using Michaelis–Menten kinetics for estimations of Vmax and K1/2 values.  相似文献   

19.
The effect of CO2 on potassium transport by Chlorella fusca   总被引:1,自引:1,他引:0  
Abstract. The effect of CO2 on net K+ uptake by Chlorella fusca grown on high CO2 levels was examined by passing 1.5% CO2 through algal suspensions gassed previously with air or CO2-free air Addition of CO2 in the light caused a large net uptake of K+ (initial velocity 4.2–9.2 mmol s?1 m?3 cells) which decreased the concentration of K+ in the supernatant from 0.1–0.2 mol m?3 to 3–10 mmol m?3. In the dark and in the presence of 30 mmol m?3 DCMU, no effects were found. Measurement or the unidirectional K+ fluxes by using 86Rb+ as a label showed that in the presence of 1.5% CO2, influx of K+ was increased by a factor of 2–4 while efflux was inhibited completely. CO2 hyperpolarized the membrane potential (determined through TPP+ uptake) from –120mV to –130 mV which could not explain the more than 15,000-fold K+ accumulations. In the light, CO2 lowered the intracellular pH (determined with DMO) by 0.5 units. In the dark and in the presence of DCMU only, a small acidification of 0.1 units was found. During the first 15 min after addition of CO2 the malate content of the cells increased from 0.7 to 1.5 mol m?3 packed cells. On the basis of these and earlier results, CO2-induced net K+ uptake is interpreted as a stimulation of an electroneutral ATP-dependent K+/H+ exchange at the plasmalemma. This exchange acts as a ‘pHstat’ by reducing the intracellular acidification caused by production of acidic assimilation products.  相似文献   

20.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号