首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
2.
Chemical and physical defenses of sessile organisms against consumers are well described for both terrestrial and marine systems. However, previous studies have focused on chemical or physical defenses in isolation, and have not considered their interaction. Marine sponges provide a model system for testing this interaction. Some sponge species produce secondary metabolites that deter predation; they may also contain siliceous spicules, but previous studies have provided little evidence that spicules in isolation offer any defense against generalist fish predators. To determine whether the two components have an additive, antagonistic, or synergistic interaction, crude organic extracts and spicules from individuals of 8 Caribbean sponge species were isolated and tested in laboratory feeding assays. These included one chemically defended reef sponge (Agelas clathrodes) and seven known to be intermediately deterrent: six from reef habitats (Cinachyrella alloclada, Clathria virgultosa, Cribrochalina infundibulum, Niphates digitalis, Svenzea zeai, and Xestospongia muta) and one from mangrove habitats (Tedania ignis). Extracts and spicules were assayed at various concentrations, both individually and in combination, in laboratory feeding assays with the bluehead wrasse, Thalassoma bifasciatum. A SAS based GENMOD procedure based on an isobolographic analysis model was used for statistical comparisons. Four sponges (A. clathrodes, C. alloclada, C. virgultosa, and one of three individuals of X. muta) showed evidence of synergisms. Of these, synergy in C. alloclada, C. virgultosa, and X. muta was caused by approximately natural concentrations of extracts and spicules. The extract of A. clathrodes was deterrent, but combination assays required nearly a 3-fold reduction in extract concentration and an 8-fold increase in spicule concentration to show the synergistic effect. Contrary to previous findings, spicules from C. infundibulum and two of three individuals of X. muta were deterrent at natural concentrations. Sponge spicules may be defensive in isolation, or may enhance chemical defenses against consumers, but the lack of synergisms for individuals in 4 of 7 species with intermediate levels of chemical defense suggests that defensive synergy is not the general rule and, when present, may be an example of an exaptation.  相似文献   

3.
Sponges have evolved a variety of chemical and structural defense mechanisms to avoid predation. While chemical defense is well established in sponges, studies on structural defense are rare and with ambiguous results. We used field and laboratory experiments to investigate predation patterns and the anti-predatory defense mechanisms of the sponge Melophlus sarasinorum, a common inhabitant of Indo-pacific coral reefs. Specifically, we aimed to investigate whether M. sarasinorum is chemically or structurally defended against predation and if the defenses are expressed differently in the ectosomal and choanosomal tissue of the sponge. Chemical defense was measured as feeding deterrence, structural defense as feeding deterrence and toughness. Our results demonstrated that chemical defense is evenly distributed throughout the sponge and works in conjunction with a structurally defended ectosome to further reduce predation levels. The choanosome of the sponge contained higher protein levels, but revealed no structural defense. We conclude that the equal distribution of chemical defenses throughout M. sarasinorum is in accordance with Optimal Defense Theory (ODT) in regards to fish predation, while structural defense supports ODT by being restricted to the surface layer which experiences the highest predation risks from mesograzers.  相似文献   

4.
The Caribbean cirratulid polychaete, Cirriformia punctata (Grube, 1856), is bright orange and burrows just below the surface of fine carbonate sand with only its filamentous tentacles and gills exposed to potential predators. In addition to its conspicuous coloration, C. punctata lacks obvious structural and morphological defenses. We hypothesized that C. punctata protects itself from predation using secondary metabolites as a chemical defense. Feeding bioassays were performed using whole worms to determine palatability against two generalist coral reef predators: the bluehead wrasse, Thalassoma bifasciatum, and the brown anemone, Aiptasia sp. Additionally, assays were conducted with hermit crabs of the genus Paguristes, but with limited success. In all assays, C. punctata was unpalatable to consumers. The tentacles and body of the worm were separately assayed using T. bifasciatum to determine whether the defensive mechanism was differentially allocated to body regions that are differently exposed to potential predators. Both the tentacles and body of C. punctata were unpalatable to T. bifasciatum, indicating no specific allocation of defenses. Crude organic extracts of whole C. punctata were unpalatable to T. bifasciatum, confirming that the worm defense is chemical rather than morphological. Chemical defenses of Cirriformia spp. appear to be generally effective against taxonomically diverse potential consumers.  相似文献   

5.
Summary Small, relatively sedentary herbivores like amphipods and polychaetes (mesograzers) often live on the plants they consume and should therefore view plants as both foods and living sites. Large, relatively mobile herbivores like fishes commonly move among, and feed from, many plants; they should view plants primarily as foods and rarely as potential living sites. In marine communities, fishes that consume plants are also important predators on mesograzers. Since seaweeds avoided by fishes should represent safer living sites for small herbivores, mesograzers living on and consuming seaweeds that are not eaten by fishes should have higher fitness than mesograzers living on plants preferred by fishes. In previous work, we demonstrated that seaweed secondary metabolites that deterred feeding by a fish and sea urchin had no effect on feeding by a common amphipod (Hay et al. 1987a). We then hypothesized that mesograzers would, in general, be less affected by seaweed chemical defenses than larger, more mobile herbivores like fishes. In this investigation, we evaluate the generality of this hypothesis by comparing the feeding of an omnivorous fish (Lagodon rhomboides) with that of an omnivorous, tube-building polychaete (Platynereis dumerilii) to see if the mesograzer prefers seaweeds avoided by the fish and if it is less affected by seaweed chemical defense. Platynereis dumerilii fed almost exclusively on Dictyota dichotoma, the seaweed eaten least by Lagodon rhomboides. The diterpene alcohols (dictyol-E and pachydictyol-A) produced by Dictyota significantly deterred feeding by Lagodon but did not affect, or at one concentration stimulated, feeding by Platynereis. Our data support the hypothesis that small, relatively sedentary herbivores that live on plants are more resistant to chemical defenses than are large, relatively mobile herbivores that move among many plants.  相似文献   

6.
Marine sponges often harbor an abundance of associated organisms. We characterized mesofauna associated with the common tropical sponge Amphimedon viridis, and then tested whether physical (spicules) or chemical (lipophilic or hydrophilic extracts) properties of this sponge provide a prospective refuge for mesofauna from fish predation. Sponge analyses revealed a moderately diverse and numerically rich community of sponge-associated mesofauna comprised primarily of mesocrustaceans (82% of total fauna). Eighty-nine percent of these were amphipods, but smaller numbers of tanaids, decapods, and isopods also occurred. Quantitative sampling of outer surfaces and interstices of fifteen A. viridis yielded a total mean ± 1 SD density of sponge–associated mesofauna of 53 ± 9.3 individuals per 100 cm3 wet sponge tissue. Among the numerically dominant amphipods, 65% occurred on outer sponge surfaces where they are most vulnerable to fish predators. We evaluated whether A. viridis provides a prospective refuge from predation by assessing the palatability of this sponge to the sympatric generalist pinfish Lagodon rhomboides. When presented small (2 mm) bite-size pieces of whole sponge tissue, similar in size to what fish might incidentally ingest should they attempt to consume sponge-mesofaunal associates, pinfish displayed strong feeding deterrence. Alginate food pellets containing tissue-level concentrations of sponge spicules caused a weak but significant deterrent response. In contrast, alginate pellets containing tissue-level concentrations of either lipophilic or hydrophilic extracts of A. viridis were highly deterrent to pinfish. Thus, chemical, and to a considerably lesser degree, physical defenses (spicules) may contribute to this sponge serving as a protective refuge for associated mesofauana.  相似文献   

7.
Interactions between organisms add complexity to ecosystem function, particularly on coral reefs. The Caribbean orange icing sponge Mycale laevis is semi-cryptic, often growing under coral colonies or between coral branches. This association is reportedly a mutualism, with the sponge deterring boring sponges from invading the coral skeleton and the coral providing an expanding surface for sponge growth. But is there an alternative explanation for the proximity of sponge and coral? We examined the importance of fish predation on the growth of the sponge. While the semi-cryptic growth form of M. laevis predominates on reefs off the Florida Keys and the Bahamas Islands, M. laevis grows with a non-cryptic, erect morphology off Bocas del Toro, Panama. Surveys revealed that sponge-eating fishes were rare or absent at Bocas del Toro compared to sites in the Florida Keys. Because past studies were inconsistent about the palatability of M. laevis to fish predators, we conducted feeding experiments with sponges from all three sites. Crude organic extracts of M. laevis from all three sites were palatable to generalist fish predators in aquarium assays, and field feeding assays and caging experiments conducted in the Florida Keys confirmed that spongivorous fishes readily ate exposed fragments of M. laevis. Our results suggest that M. laevis is restricted to its semi-cryptic growth form by spongivorous predators, with corals providing a physical refuge from predation. This alternative explanation supports the broader hypothesis that Caribbean reef sponges can be categorized on the basis of chemical defense into defended, palatable, and preferred species, the last of which are restricted to refugia.  相似文献   

8.
If generalist insect predators are a selective force contributing to patterns of feeding specialization by insect herbivores, then predators should be deterred from eating allelochemical-fed prey. The attack and feeding behaviors of naive predators (Podisus maculiventris stinkbugs) reared on control caterpillars (Manduca sexta) fed plain diet were compared to experienced predators reared on caterpillars fed tomato allelochemicals. Tomatine-fed prey were found more quickly by both naive and tomatine-experienced predators, and chlorogenic acid-experienced predators were more stimulated to begin searching for prey. However, experienced predators were less likely to attack both chlorogenic acidfed and tomatine-fed caterpillars than were naive predators. These results indicate that allelochemical-fed prey were easier for predators to locate, but allelochemical-containing prey often deterred predation by experienced predtors.  相似文献   

9.
Marine hydroids are commonly thought to be defended by stinging organelles called nematocysts that penetrate predator tissues and inject proteinaceous venoms, but not all hydroids possess these nematocysts. Although an increasing number of bioactive secondary metabolites have been isolated from marine hydroids, ecological roles of these compounds are poorly known. To test the hypothesis that nematocysts and noxious secondary metabolites represent alternative defenses against predation, we examined hydroids from North Carolina, United States for: (1) the palatability of whole polyps before and after nematocysts had been deactivated; (2) the palatability of their chemical extracts; and (3) their nutritional value in terms of organic content, protein content, and levels of refractory structural material (chitin). All hydroids were avoided by a generalist predator, the pinfish Lagodon rhomboides, compared with palatable control foods. Two of these (Halocordyle disticha and Tubularia crocea) became palatable after being treated with potassium chloride to discharge their nematocysts, suggesting that these species rely on nematocysts for defenses against predators. Chemical extracts from nematocyst-defended species had no effect on fish feeding. The four species that remained unpalatable after nematocysts had been discharged (Corydendrium parasiticum, Eudendrium carneum, Hydractinia symbiolongicarpus, Tridentata marginata) possessed chemical extracts that deterred feeding by pinfish. We have isolated and characterized the structures of the deterrent metabolites in two of these species. We found no differences in nutritional content or levels of chitin between nematocyst-defended and chemically defended species, and no evidence that either of these played a role in the rejection of hydroids as prey. Our results suggest that, among hydroids, chemical defenses may be at least as common as nematocyst-based defenses and that the two may represent largely alternative defensive strategies. The four hydroid species with deterrent extracts represent four families and both sub-orders of hydroids, suggesting that chemical defenses in this group may be widespread and have multiple origins. Received: 25 May 1999 / Accepted: 1 February 2000  相似文献   

10.
Predation on corals by visual predators is a significant source of partial or total mortality on coral reefs, and corals have evolved strategies, including chemical defenses, to deter predation. One mechanism that organisms use to communicate the presence of chemical defenses is aposematic coloration, or the display of bright coloration as a warning to visual predators such as fish. Corals exhibit multiple colors, and it has been hypothesized that one role for this variability in coloration is as an aposematic warning of adverse palatability. Here, we test green and orange color morphs of the Caribbean coral Montastraea cavernosa for the presence of chemical defenses and whether their differences in coloration elicited different feeding responses. While M. cavernosa is chemically defended, there is no difference in feeding deterrence between color morphs; thus, the different color morphs of this coral species do not appear to represent an example of aposematic coloration.  相似文献   

11.
Kishida O  Nishimura K 《Oecologia》2004,140(3):414-421
Predator induced morphological defenses are marked morphological shifts induced directly by cues associated with a predator. Generally, remote cues, i.e., chemical substances emitted from predators or injured conspecifics, are considered to be ideal signals to induce morphological change in aquatic environments rather than close cues, i.e., close chemical or tactile cues, since chemical substances that can propagate over relatively long distances and persist for a long period may allow organisms to keep safe and to deliberately change their morph. In fact, most organisms adopting an inducible morphological defense utilize remote chemical cues to detect predation risk and to produce morphological defenses. In this paper, we report a unique and functionally well designed inducible morphological defense strategy where the induction process requires close cues from a predator. The tadpoles of Rana pirica exhibited a bulgy bodied morphology when threatened with predation by larval salamanders, Hynobius retardatus, in close proximity. Predation trials and a function experiment showed that the induced bulgy morph is an adaptive defense phenotype against the gape-limited predator larval H. retardatus. Furthermore, R. pirica tadpoles use two adaptive strategies in terms of cost saving, i.e., adjustment of the extent of bulginess according to predation risk and reversibility by actual shrink of bulgy body after removing the predation threat. In general, R. pirica hatch earlier than H. retardatus. In natural ponds, during the early developmental stage R. pirica tadpoles live in close proximity to young H. retardatus larvae. As they grow, the salamanders gradually become serious predators and the predator–prey interaction becomes intimate. After a while, predation, cannibalism and metamorphosis decrease the number of salamanders in the ponds, and the predator–prey interaction weakens. Such a phenology in the predator–prey interaction allows the evolution of a close-cue detection system and adaptive cost-saving strategies. Our results highlight that the characteristics of the inducible defense depend on the intensity and specificity of the predator–prey system.  相似文献   

12.
Chemical defenses are an effective mode of predator deterrence across benthic marine organisms, but their production may come with associated costs to the organism as limited resources are diverted away from primary processes like growth and reproduction. Organisms concentrating ecologically relevant levels of these defenses in tissues most at risk to predator attack may alleviate this cost while deterring predators. We addressed this hypothesis by investigating the deterrence of chemical extracts from the inner and outer regions of the sponges Aplysina fulva, Ircinia felix, and I. campana from a temperate hard-bottom reef in the South Atlantic Bight. Assays were conducted using natural fish assemblages and sea urchins. Although, A. fulva and I. felix have higher concentrations of defensive metabolites in the outer and inner regions, respectively, extracts from these regions did not display enhanced deterrency against fish or mobile invertebrate predators. Likewise, extracts from both regions of the sponge Ircinia campana, which has a uniform distribution of defensive chemicals throughout, did not differ in their ability to deter either group of predators. Since chemical defenses were effective deterrents at lower concentrations, secondary metabolite allocation patterns observed among these sponges are likely not driven by predation pressure from generalist fish and mobile invertebrate predators on these reefs. Alternatively, these patterns may be driven by other ecological stressors, another suite of predators, or may be more effective at deterring predators when combined with structural defenses.  相似文献   

13.
Sponge tissue often contains two structural components in high concentrations: spicules of silica, and refractory fibers of protein (spongin). Some terrestrial plants contain analogous structures, siliceous inclusions and refractory lignins, that have been demonstrated to deter herbivory. We performed feeding experiments with predatory reef fish to assess the deterrent properties of the structural components of three common Caribbean demosponges, Agelas clathrodes, Ectyoplasia ferox, and Xestospongia muta. The concentrations of spicules and spongin in the tissues varied widely between the three species, but when assayed at their natural volumetric concentrations, neither spicules (all three species assayed) nor the intact spiculated spongin skeleton (A. clathrodes and X. muta assayed) deterred feeding by reef fish in aquarium or field assays using prepared foods of a nutritional quality similar to, or higher than, that of sponge tissue. Spicules deterred feeding in aquarium assays when incorporated into prepared foods of a nutritional quality lower than that of sponge tissue (15–19 times less protein), but spiculated spongin skeleton was still palatable, even in prepared foods devoid of measurable protein, and even though spicules embedded in spongin were oriented in their natural conformation. Based on comparisons of the nutritional qualities of the tissues of the three sponge species and of the prepared foods, sponge tissue would have to be much lower in food value (5 times less protein or lower) for spicules to provide an effective defense, and spicules in combination with the spongin skeleton would be unlikely to provide an effective defense regardless of the nutritional quality of the tissue. Unlike terrestrial plants, marine sponges may use silica and refractory fibers solely for structural purposes.  相似文献   

14.
Paul E. Bourdeau 《Oecologia》2010,162(4):987-994
Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to “label” predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses.  相似文献   

15.
When attacked by herbivores, plants produce toxic secondary metabolites that function as direct defenses, as well as indirect defenses that attract and reward predators of the offending herbivores. These indirect defenses include both nutritive rewards such as extra floral nectar, as well as informational rewards, such as the production and release of volatile compounds that betray the location of feeding herbivores to predators. Herbivory of Nicotiana attenuata by the tobacco hornworm (Manduca larvae) alters the volatile profiles of both the plant and larval headspace. Herbivory-elicited specific changes in the volatile profiles are detected by arthropod predators of Manduca larvae. The known predators that perceive volatile cues induced by Manduca herbivory of N. attenuata are insects that target Manduca at early developmental stages, when the larvae are still small; large, late-instar larvae may have outgrown these predation risks. However, here we offer evidence that branched chain aliphatic acids derived from the digestion of plant O-acyl sugars from trichomes may betray Manduca larvae to lizard predators during late developmental stages as well.  相似文献   

16.
The tunic of Cystodytes dellechiajei (Poly- citoridae), a colony-forming species of the Ascidiacea that contains biologically active alkaloids, was investigated using light microscopy, laser-scanning microscopy and nuclear magnetic resonance techniques. The colonies contain numerous individual zooids, which are embedded in a common tunic. Each zooid is protected by a firm capsule of overlapping calcareous spicules. The colonies lack blood vessels in the tunic, but six morphologically different types of tunic cells were found: pigment cells, bladder cells, vacuolated filopodial cells, granular filopodial cells, morula cells and granular cells. Rod-like bacteria were found in the tunic matrix. Bladder cells and pigment cells could be identified as storage units for acid and pyridoacridine alkaloids, making the tunic inedible and repelling predators. Filopodial cells have long filopodia, which probably are connected to each other. They may be involved in transportation processes within the tunic tissue. The functions of the morula cells and the granular cells are unknown as yet. With its several specialised cells, the tunic of C. dellechiajei represents a dynamic living tissue containing biologically active compounds. Accepted: 20 September 2000  相似文献   

17.
Inducible defenses are important in the life strategies of many taxa. In some species of marine gastropods, water-borne chemical cues from potential predators induce defensive changes in shell form and differences in growth rate. We examined such phenotypic plasticity in the direct-developing snail, Littorina subrotundata (Carpenter, 1864). Among experimental field populations of L. subrotundata exposed to differing intensities of predation by the purple shore crab, Hemigrapsus nudus (Dana, 1851), snails collected from predation-intense environments often had more massive shells than closely related snails from adjacent environments where predation was negligible. Snails collected from both environments were raised in tanks containing cages of H. nudus that were feeding on conspecific snails and compared to a control group raised in the absence of this stimulus. Most snails developed significantly more massive shells in the presence of the crabs suggesting that adaptive phenotypic plasticity may account for some of the variation we observed in the field. In one case, snails from a predation-intense environment did not exhibit a statistically significant amount of plasticity, but instead grew a more massive shell irrespective of the laboratory stimulus. We interpret this as evidence for a genetic difference in the plasticity of shell form among experimental populations, caused by intense selection by H. nudus. There was no statistical difference in the growth rates of snails among treatments.  相似文献   

18.
Lopanik N  Lindquist N  Targett N 《Oecologia》2004,139(1):131-139
Larvae of the sessile marine invertebrate Bugula neritina (Bryozoa) are protected by an effective chemical defense. From the larvae, we isolated three bryostatin-class macrocyclic polyketides, including the novel bryostatin 20, that deterred feeding by a common planktivorous fish that co-occurs with B. neritina. A unique bacterial symbiont of B. neritina, Endobugula sertula, was hypothesized as the putative source of the bryostatins. We show that: (1) bryostatins are concentrated in B. neritina larvae and protect them against predation by fish; (2) the adults are not defended by bryostatins; and (3) E. sertula produces bryostatins. This study represents the first example from the marine environment of a microbial symbiont producing an anti-predator defense for its host and, in this case, specifically for the hosts larval stage, which is exceptionally vulnerable to predators.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

19.
The ability of prey to detect and adequately respond to predation risk influences immediate survival and overall fitness. Chemical cues are commonly used by prey to evaluate risk, and the purpose of this study was to elicit the nature of cues used by prey hunted by generalist predators. Nucella lapillus are common, predatory, intertidal snails that evaluate predatory risk using chemical cues. Using Nucella and a suite of its potential predators as a model system, we explored how (1) predator type, (2) predator diet, and (3) injured conspecifics and heterospecifics influence Nucella behavior. Using laboratory flumes, we determined that Nucella responded only to the invasive green crab (Carcinus maenas), the predator it most frequently encounters. Nucella did not respond to rock crabs (Cancer irroratus) or Jonah crabs (Cancer borealis), which are sympatric predators but do not frequently encounter Nucella because these crabs are primarily subtidal. Predator diet did not affect Nucella responses to risk, although starved predator response was not significantly different from controls. Since green crabs are generalist predators, diet cues do not reflect predation risk, and thus altering behavior as a function of predator diet would not likely benefit Nucella. Nucella did, however, react to injured conspecifics, a strategy that may allow them to recognize threats when predators are difficult to detect. Nucella did not react to injured heterospecifics including mussels (Mytilus edulis) and herbivorous snails Littorina littorea, suggesting that they are responding to chemical cues unique to their species. The nature of cues used by Nucella allows them to minimize costs associated with predator avoidance.  相似文献   

20.
Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of plant resistance phenotypes suggests that compensation is not always constrained by reduced food quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号