首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism underlying protease-activated receptor (PAR)-activation and subsequent interleukin (IL)-8 production in airway epithelial cells is not yet understood. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in A549 airway epithelial cells. We studied the consequence of activation of PARs with simultaneous exposure to LPS. Thrombin, PAR-2-activating peptide and LPS, were tested alone and in combination. They induced significant synthesis of IL-8. However, only activation of PAR triggered phosphorylation of ERK1/2 and JNK. The application of the inhibitors of these two MAPKs resulted in reduction of IL-8 production. Thus, activation of PARs but not stimulation with LPS leads to ERK1/2 and JNK-mediated production of IL-8.  相似文献   

2.
Protease-activated receptors (PARs) are widely distributed in human airways, and recent evidence indicates a role for PARs in the pathophysiology of inflammatory airway disease. To further investigate the role of PARs in airway disease, we determined the expression and function of PARs in a murine model of respiratory tract viral infection. PAR-1, PAR-2, PAR-3, and PAR-4 mRNA and protein were expressed in murine airways, and confocal microscopy revealed colocalization of PAR-2 and cyclooxygenase (COX)-2 immunostaining in basal tracheal epithelial cells. Elevated levels of PAR immunostaining, which was particularly striking for PAR-1 and PAR-2, were observed in the airways of influenza A/PR-8/34 virus-infected mice compared with sham-infected mice. Furthermore, increased PAR-1 and PAR-2 expression was associated with significant changes in in vivo lung function responses. PAR-1 agonist peptide potentiated methacholine-induced increases in airway resistance in anesthetized sham-infected mice (and in indomethacin-treated, virus-infected mice), but no such potentiation was observed in virus-infected mice. PAR-2 agonist peptide transiently inhibited methacholine-induced bronchoconstriction in sham-infected mice, and this effect was prolonged in virus-infected mice. These findings suggest that during viral infection, the upregulation of PARs in the airways is coupled to increased activation of COX and enhanced generation of bronchodilatory prostanoids.  相似文献   

3.
Thrombin activates mast cells to release inflammatory mediators through a mechanism involving protease-activated receptor-1 (PAR-1). We hypothesized that PAR-1 activation would induce mast cell adhesion to fibronectin (FN). Fluorescent adhesion assay was performed in 96-well plates coated with FN (20 microg/ml). Murine bone marrow cultured mast cells (BMCMC) were used after 3-5 wk of culture (>98% mast cells by flow cytometry for c-Kit expression). Thrombin induced beta-hexosaminidase, IL-6, and matrix metalloproteinase-9 release from BMCMC. Thrombin and the PAR-1-activating peptide AparafluoroFRCyclohexylACitY-NH(2) (cit) induced BMCMC adhesion to FN in a dose-dependent fashion, while the PAR-1-inactive peptide FSLLRY-NH(2) had no effect. Thrombin and cit induced also BMCMC adhesion to laminin. Thrombin-mediated adhesion to FN was inhibited by anti-alpha(5) integrin Ab (51.1 +/- 6.7%; n = 5). The combination of anti-alpha(5) and anti-alpha(4) Abs induced higher inhibition (65.7 +/- 7.1%; n = 5). Unlike what is known for FcepsilonRI-mediated adhesion, PAR-1-mediated adhesion to FN did not increase mediator release. We then explored the signaling pathways involved in PAR-1-mediated mast cell adhesion. Thrombin and cit induced p44/42 and p38 phosphorylation. Pertussis toxin inhibited PAR-1-mediated BMCMC adhesion by 57.3 +/- 7.3% (n = 4), indicating that G(i) proteins are involved. Wortmannin and calphostin almost completely inhibited PAR-1-mediated mast cell adhesion, indicating that PI-3 kinase and protein kinase C are involved. Adhesion was partially inhibited by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (24.5 +/- 3.3%; n = 3) and the p38 inhibitor SB203580 (25.1 +/- 10.4%; n = 3). The two inhibitors had additive effects. Therefore, thrombin mediates mast cell adhesion through the activation of G(i) proteins, phosphoinositol 3-kinase, protein kinase C, and mitogen-activated protein kinase pathways.  相似文献   

4.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

5.
Protease-activated receptors (PARs) are widely expressed within the heart. They are activated by a myriad of proteases, including coagulation proteases. In vitro studies showed that activation of PAR-1 and PAR-2 on cardiomyocytes induced hypertrophy. In addition, PAR-1 stimulation on cardiac fibroblasts induced proliferation. Genetic and pharmacologic approaches have been used to investigate the role of the different PARs in cardiac ischemia/reperfusion (I/R) injury. In mice and rats, PAR-1 is reported to play a role in inflammation, infarct size, and remodeling after cardiac I/R injury. However, there are notable differences between the effect of a deficiency in PAR-1 and inhibition of PAR-1. For instance, inhibition of PAR-1 reduced infarct size whereas there was no effect of a deficiency of PAR-1. These differences maybe due to off-target effects of the inhibitor or PAR-4 compensation of PAR-1 deficiency. Similarly, a deficiency of PAR-2 was associated with reduced cardiac inflammation and improved heart function after I/R injury, whereas pharmacologic activation of PAR-2 was found to be protective due to increased vasodilatation. These differences maybe due to different signaling responses induced by an endogenous protease versus an exogenous agonist peptide. Surprisingly, PAR-4 deficiency resulted in increased cardiac injury and increased mortality after I/R injury. In contrast, a pharmacological study indicated that inhibition of PAR-4 was cardioprotective. It is possible that the major cellular target of the PAR-4 inhibitor is platelets, which have been shown to contribute to inflammation in the injured heart, whereas PAR-4 signaling in cardiomyocytes may be protective. These discrepant results between genetic and pharmacological approaches indicate that further studies are needed to determine the role of different PARs in the injured heart.  相似文献   

6.
Proteinase-activated receptor (PAR)-1 or -2 modulates gastrointestinal transit in vivo. To clarify the underlying mechanisms, we characterized contraction/relaxation caused by TFLLR-NH2 and SLIGRL-NH2, PAR-1- and -2-activating peptides, respectively, in gastric and small intestinal (duodenal, jejunal and ileal) smooth muscle isolated from wild-type and PAR-2-knockout mice. Either SLIGRL-NH2 or TFLLR-NH2 caused both relaxation and contraction in the gastrointestinal preparations from wild-type animals. Apamin, a K+ channel inhibitor, tended to enhance the peptide-evoked contraction in some of the gastrointestinal preparations, whereas it inhibited relaxation responses to either peptide completely in the stomach, but only partially in the small intestine. Indomethacin reduced the contraction caused by SLIGRL-NH2 or TFLLR-NH2 in both gastric and ileal preparations, but unaffected apamin-insensitive relaxant effect of either peptide in ileal preparations. Repeated treatment with capsaicin suppressed the contractile effect of either peptide in the stomach, but not clearly in the ileum, whereas it enhanced the apamin-insensitive relaxant effect in ileal preparations. In any gastrointestinal preparations from PAR-2-knockout mice, SLIGRL-NH2 produced no responses. Thus, the inhibitory component in tension modulation by PAR-1 and -2 involves both apamin-sensitive and -insensitive mechanisms in the small intestine, but is predominantly attributable to the former mechanism in the stomach. The excitatory component in the PAR-1 and -2 modulation may be mediated, in part, by activation of capsaicin-sensitive sensory nerves and/or endogenous prostaglandin formation. Our study thus clarifies the multiple mechanisms for gastrointestinal motility modulation by PAR-1 and -2, and also provides ultimate evidence for involvement of PAR-2.  相似文献   

7.
Protease-activated receptors (PARs) mediate cellular responses to a subset of extracellular proteases, including blood coagulation factors and proteases produced by inflammatory cells. Cells in bone, cartilage and muscle exhibit cell type-specific expression patterns and functional responses for the different PARs. Activators of PAR-1 include thrombin, and activators of PAR-2 include trypsin and tryptase; PARs-3 and -4 are also receptors for thrombin. Thrombin stimulates PAR-1-mediated proliferative responses in osteoblasts, chondrocytes and myoblasts, and in developing muscle, PAR-1 activation by thrombin appears to mediate activity-dependent polyneuronal synapse reduction. In bone, activation of PAR-2 leads to inhibition of osteoblast-mediated osteoclast differentiation induced by hormones or cytokines, and in muscle, PAR-2 activation leads to stimulation of myoblast proliferation. Although there is some evidence for a role for PARs expressed by cells of the musculoskeletal system at specific stages of development, their major role appears to be in protecting the tissues from the destructive effects of inflammation and promoting regeneration. This review discusses the regulation of cell function in the musculoskeletal system by receptor-mediated responses to proteases. Expression patterns of PARs, the circumstances in which PAR activators are likely to be present, functional responses of PAR activation, and responses to thrombin for which receptors have not yet been identified are considered.  相似文献   

8.
Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor and is expressed throughout the gut. It is well known that PAR-2 participates in the regulation of gastrointestinal motility; however, the results are inconsistent. The present study investigated the effect and mechanism of PAR-2 activation on murine small intestinal smooth muscle function in vitro. Both trypsin and PAR-2-activating peptide SLIGRL induced a small relaxation followed by a concentration-dependent contraction. The sensitivity to trypsin was greater than that to SLIGRL (EC50 = 0.03 vs. 40 microM), but maximal responses were similar (12.3 +/- 1.6 vs. 13.7 +/- 1.3 N/cm2). Trypsin-evoked contraction (1 microM) exhibited a rapid desensitization, whereas the desensitization of response to SLIGRL was less even at high concentration (50 microM). Atropine had no effect on PAR-2 agonist-induced contractions. In contrast, TTX and capsaicin significantly attenuated those contractions, implicating a neurogenic mechanism that may involve capsaicin-sensitive sensory nerves. Furthermore, contractions induced by trypsin and SLIGRL were reduced by neurokinin receptor NK1 antagonist SR-140333 or NK2 antagonist SR-48968 alone or were further reduced by combined application of SR-140333 and SR-48968, indicating the involvement of neurokinin receptors. In addition, desensitizing neurokinin receptors with substance P and/or neurokinin A decreased the PAR-2 agonist-evoked contraction. We concluded that PAR-2 agonists induced a contraction of murine intestinal smooth muscle that was mediated by nerves. The excitatory effect is also dependent on sensory neural pathways and requires both NK1 and NK2 receptors.  相似文献   

9.
Proteinase-activated receptor 1 (PAR-1) is a G protein-coupled receptor that is activated by thrombin and is implicated in the pathogenesis of inflammation. Although PAR-1 is expressed on immunocompetent cells within the brain such as astrocytes, little is known about its role in the pathogenesis of inflammatory brain diseases. Herein, we investigated PAR-1 regulation of brain inflammation by stimulating human astrocytic cells with thrombin or the selective PAR-1-activating peptide. Activated cells expressed significantly increased levels of IL-1 beta, inducible NO synthase, and PAR-1 mRNA. Moreover, supernatants of these same cells were neurotoxic, which was inhibited by an N-methyl-D-aspartate receptor antagonist. Striatal implantation of the PAR-1-activating peptide significantly induced brain inflammation and neurobehavioral deficits in mice compared with mice implanted with the control peptide or saline. Since HIV-related neurological disease is predicated on brain inflammation and neuronal injury, the expression of PAR-1 in HIV encephalitis (HIVE) was investigated. Immunohistochemical analysis revealed that PAR-1 and (pro)-thrombin protein expression was low in control brains, but intense immunoreactivity was observed on astrocytes in HIVE brains. Similarly, PAR-1 and thrombin mRNA levels were significantly increased in HIVE brains compared with control and multiple sclerosis brains. These data indicated that activation and up-regulation of PAR-1 probably contribute to brain inflammation and neuronal damage during HIV-1 infection, thus providing new therapeutic targets for the treatment of HIV-related neurodegeneration.  相似文献   

10.
Three members of the family of protease-activated receptors (PARs), PARs-1, -3 and -4, have been identified as thrombin receptors. PAR-1 is expressed by primary myoblast cultures, and expression is repressed once myoblasts fuse to form myotubes. The current study was undertaken to investigate the hypothesis that thrombin inhibits myoblast fusion. Primary rodent myoblast cultures were deprived of serum to promote myoblast fusion and then cultured in the presence or absence of thrombin. Thrombin inhibited myoblast fusion, but another notable effect was observed; 50% of control cells were apoptotic within 24 h of serum deprivation, whereas less than 15% of thrombin-treated cells showed signs of apoptosis. Proteolysis was required for the effect of thrombin, but no other serine protease tested mimicked the action of thrombin. Neither a PAR-1- nor a PAR-4-activating peptide inhibited apoptosis or fusion, and myoblast cultures were negative for PAR-3 expression. Myoblasts exposed to thrombin for 1 h and then changed to medium without thrombin accumulated apoptosis inhibitory activity in their medium over the subsequent 20 h. Thus the protective action of thrombin appears to be effected through cleavage of an unidentified thrombin receptor, leading to secretion of a downstream apoptosis inhibitory factor. These results demonstrate that thrombin functions as a survival factor for myoblasts and is likely to play an important role in muscle development and repair.  相似文献   

11.
Gastrointestinal functions of proteinase-activated receptors   总被引:3,自引:0,他引:3  
Kawabata A 《Life sciences》2003,74(2-3):247-254
Proteinase-activated receptors (PARs) are a family of G-protein-coupled-seven-trans-membrane-domain receptors, consisting of four family members. PARs, especially PAR-1, a thrombin receptor, and PAR-2, a receptor for trypsin, tryptase and coagulation factors VIIa and Xa, are abundantly distributed throughout the gastrointestinal tract. PAR-2, but not other PARs, induces salivary and pancreatic exocrine secretion. Both PAR-2 and PAR-1 play protective roles in the gastric mucosa, modulating a variety of gastric functions. However, the mechanisms underlying the mucosal protection caused by PAR-2 and PAR-1 are entirely different. In the intestinal mucosa, PAR-2 appears to play a dual role, being pro- and anti-inflammatory. PAR-1, PAR-2 and also PAR-4 modulate the motility of the smooth muscle in the gastrointestinal tract including the esophageal muscularis mucosae, producing contraction and/or relaxation upon activation. Thus, PARs, especially PAR-1 and PAR-2, play extensive roles in modulating the gastrointestinal functions.  相似文献   

12.
Abe K  Aslam A  Walls AF  Sato T  Inoue H 《Life sciences》2006,79(9):898-904
Protease-activated receptors (PARs) have been implicated in the development of acute and chronic inflammatory responses. We have examined the expression of mRNA for PARs and their regulation by growth factors and cytokines in synovial fibroblasts derived from patients with rheumatoid arthritis (RA). Messenger RNA for PAR-1, -2 and -3 was detected in these cells, but not that for PAR-4. Expression of mRNA for PAR-2 was up-regulated by bFGF in a concentration-dependent manner, whereas expression of mRNA for PAR-1 and PAR-3 was not affected. Levels of mRNA encoding PAR-1, PAR-2 and PAR-3 did not increase in response to IL-1beta and TNF-alpha. Expression of mRNA for PAR-2 was maximal 12 h after addition of bFGF, and maximal levels of immunoreactive PAR-2 were reached after 24 h. Furthermore, PAR-2 agonist peptide (SLIGKV-NH(2)), but not the inactive reverse peptide (VKGILS-NH(2)), induced transitory cytosolic Ca(2+) mobilization in cells, and its response was increased by pretreatment with bFGF. An important role could be played by bFGF in the regulation of functional PAR-2 expression in cultured RA synovial fibroblasts.  相似文献   

13.
Protease-activated receptor-2 (PAR-2) is a member of seven transmembrane domain G protein-coupled receptors activated by proteolytic cleavage. PAR-2 is involved in inflammatory events and cardiac ischemic reperfusion injury. The objective of this study was to investigate the effects of PAR-2 in experimental myocardial ischemic preconditioning. To monitor the effects of PAR-2, Langendorff-perfused rat hearts were used. These hearts were treated with PAR-2-activating peptide (PAR-2AP) in various protocols. Hemodynamic parameters (left ventricular developed pressure, left ventricular diastolic pressure, coronary flow rate, and heart rate), several indexes of oxidative injury, and neutrophil accumulation were evaluated. We show for the first time that enhanced PAR-2 activation improves efficiency of ischemic preconditioning and reduces cardiac inflammation in the rat heart. Indeed, after PAR-2AP infusion we found that hemodynamic parameters, oxidative injury, infarct size, and neutrophil accumulation were involved. These data support the concept that PAR-2-dependent cell trafficking may regulate signaling responses to cardiac ischemia and inflammation.  相似文献   

14.
15.
Among the four protease-activated receptors (PARs), PAR-1 plays an important role in normal lung functioning and in the development of lung diseases, including fibrosis. We compared the expression and functional activity of PARs in normal and fibrotic human lung fibroblasts. Both normal and fibrotic cells express PAR-1, -2, and -3, with PAR-2 showing the lowest level. There was no significant difference between normal and fibrotic fibroblasts in expression levels of PAR-1 and PAR-3, whereas a fourfold higher expression level of PAR-2 was observed in fibrotic cells compared with normal cells. Ca(2+) imaging studies revealed apparently only PAR-1-induced Ca(2+) signaling in lung fibroblasts. PAR-1 agonists, thrombin and synthetic activating peptide, induced concentration-dependent Ca(2+) mobilization with EC(50) values of 5 nM and 1 microM, respectively. The neutrophil protease cathepsin G produced a transient Ca(2+) response followed by disabling PAR-1, whereas elastase did not affect Ca(2+) level. PAR-1 activation by thrombin or receptor-activating peptide downregulated expression of all three PARs in lung fibroblasts, with maximal effect at 3-6 h, whereas expression returned toward basal level after 24 h. Furthermore, PAR-1 agonists dose dependently increased PGE(2) secretion from lung fibroblasts and induction of cyclooxygenase-2 expression. We then found that PGE(2) downregulated expression of all three PARs. The effect of PGE(2) was continuously growing with time. Furthermore, PGE(2) exerts its effect through the EP2 receptor that was confirmed using the selective EP2 agonist butaprost. This novel autocrine feedback mechanism of PGE(2) in lung fibroblasts seems to be an important regulator in lung physiology and pathology.  相似文献   

16.
Protease-activated receptor-2 (PAR-2) is abundantly expressed in gastric mucosal chief cells, facilitating pepsinogen secretion. In the present study, we investigated whether PAR-1, a thrombin receptor, could modulate pepsinogen secretion in rats. The PAR-1-activating peptide TFLLR-NH(2) as well as the PAR-2-activating peptide SLIGRL-NH(2), administered i.v. repeatedly at 1-h intervals, significantly increased gastric pepsinogen secretion over 2-4 h (after two to four doses). In contrast, the control peptide FTLLR-NH(2), given in the same manner, had no such effect. Thus, PAR-1, like PAR-2, might function to facilitate pepsinogen secretion, suggesting a novel role of the thrombin-PAR-1-pathway in the stomach.  相似文献   

17.
The serine protease thrombin stimulates proliferation in osteoblasts, but decreases alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation. Three thrombin receptors have been identified, protease activated receptor (PAR)-1, PAR-3 and PAR-4; we have previously demonstrated that mouse osteoblasts express PAR-1 and PAR-4. The effect of thrombin on osteoblast proliferation and differentiation was studied to determine which of the thrombin receptors is responsible for the primary effects of thrombin. Primary mouse calvarial osteoblasts from PAR-1-null and wild-type mice, and synthetic peptides that specifically activate PAR-1 (TFFLR-NH2) and PAR-4 (AYPGKF-NH2) were used. Both the PAR-1-activating peptide and thrombin stimulated incorporation of 5-bromo-2'-deoxyuridine (two to four-fold, P < 0.001) and reduced alkaline phosphatase activity (approximately three-fold, P < 0.05) in cells from wild-type mice. The PAR-4-activating peptide, however, had no effect on either alkaline phosphatase activity or proliferation in these cells. Neither thrombin nor PAR-4-activating peptide was able to affect osteoblast proliferation or alkaline phosphatase activity in cells isolated from PAR-1-null mice. The results demonstrate that thrombin stimulates proliferation and inhibits differentiation of osteoblasts through activation of PAR-1. No other thrombin receptor appears to be involved in these effects.  相似文献   

18.
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.  相似文献   

19.
Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH2, and PAR-2 agonist peptide tc-LIGRLO-NH2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH2-induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH2, an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH2-induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.  相似文献   

20.
Protease-activated receptors (PARs) mediate cellular responses to a variety of extracellular proteases. The four known PARs constitute a subgroup of the family of seven-transmembrane domain G protein-coupled receptors and activate intracellular signalling pathways typical for this family of receptors. Activation of PARs involves proteolytic cleavage of the extracellular domain, resulting in formation of a new N terminus, which acts as a tethered ligand. PAR-1, -3, and -4 are relatively selective for activation by thrombin whereas PAR-2 is activated by a variety of proteases, including trypsin and tryptase. Recent studies in mice genetically incapable of expressing specific PARs have defined roles for PAR-1 in vascular development, and for PAR-3 and -4 in platelet activation, which plays a fundamental role in blood coagulation. PAR-1 has also been implicated in a variety of other biological processes including inflammation, and brain and muscle development. Responses mediated by PAR-2 include contraction of intestinal smooth muscle, epithelium-dependent smooth muscle relaxation in the airways and vasculature, and potentiation of inflammatory responses. The area of PAR research is rapidly expanding our understanding of how cells communicate and control biological functions, in turn increasing our knowledge of disease processes and providing potential targets for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号