首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Because the integrity of an axon depends on the supply of proteins synthesized in the cell body, we examined the effect of axotomy on the transport of structural proteins in rat motor axons, and the effect of altered transport on the rate of outgrowth after a subsequent testing axotomy. To examine the axonal transport of structural proteins, we labeled newly synthesized proteins with 35S-methionine 7 days after a "conditioning" lesion of the sciatic nerve, and removed the nerve 7-21 days later for SDS-PAGE. Tubulin, actin, calmodulin, and the 68-kD light neurofilament protein (NF-L) were identified by fluorography and removed for liquid scintillation counting. The fastest moving structural proteins were carried by slow component b (SCb) of axonal transport, which advanced 20% faster in conditioned axons: 4.2 versus 3.5 mm/day (p less than 0.01). NF-L was not accelerated, indicating that the motor for subcomponent a (SCa) of slow axonal transport was unaffected by axotomy. To measure outgrowth distances, the testing lesions was made 7 days after the conditioning lesion, and growth cones were located by the fast transport method 3 or 9 days later. The regression analysis of outgrowth distance on time showed that sprouts elongated 25% faster in conditioned axons: 4.0 versus 3.2 mm/day (p less than 0.001). These accelerated sprouts were formed too far from the spinal cord to contain SCb proteins that were synthesized after axotomy. Because the rate of outgrowth correlated closely with the rate of SCb in outgrowing sprouts (McQuarrie and Jacob, J. Comp. Neurol. 305:139-147, 1991), we conclude that SCb is accelerated throughout the length of the axon by 7 days after axotomy.  相似文献   

2.
Because the integrity of an axon depends on the supply of proteins synthesized in the cell body, we examined the effect of axotomy on the transport of structural proteins in rat motor axons, and the effect of altered transport on the rate of outgrowth after a subsequent testing axotomy. To examine the axonal transport of structural proteins, we labeled newly synthesized proteins with 35 S-methiomine 7 days after a “conditioning” lesion of the sciatic nerve, and removed the nerve 7–21 days later for SDS-PAGE. Tubulin, actin, calmodulin, and the 68-kD light neurofilament protein (NF-L) were identified by fluorography and removed for liquid scintillation counting. The fastest moving structural proteins were carried by slow component b (SCb) of axonal transport, which advanced 20% faster in conditioned axons: 4.2 versus 3.5 mm/day (p < 0.01). NF-L was not accelerated, indicating that the motor for subcomponent a (SCa) of slow axonal transport was unaffected by axotomy. To measure outgrowth distances, the testing lesion was made 7 days after the conditioning lesion, and growth cones were located by the fast transport method 3 or 9 days later. The regression analysis of outgrowth distance on time showed that sprouts elongated 25% faster in conditioned axons: 4.0 versus 3.2 mm/day (p < 0.001). These accelerated sprouts were formed too far from the spinal cord to contain SCb proteins that were synthesized after axotomy. Because the rate of outgrowth correlates closely with the rate of SCb in outgrowing sprouts (McQuarrie and Jacob, J. Comp. Neurol. 305:139–147, 1991), we conclude that SCb is accelerated throughout the length of the axon by 7 days after axotomy.  相似文献   

3.
A nerve-conditioning lesion accelerates limb regeneration in the newt   总被引:2,自引:0,他引:2  
A nerve-conditioning lesion induced sustained acceleration of limb regeneration. Newt limb nerves were subjected to a conditioning lesion by unilateral axotomy at the elbow 2 weeks prior to amputating both limbs above the elbows. Limbs on the side that had received a conditioning lesion began the regeneration process 3-4 days earlier than contralateral controls and this difference was observed up to recognizable digit formation. Limb buds on the conditioned sides had a twofold greater axonal density than contralateral counterparts at 2 weeks after amputation. Since limb bud formation is dependent on a sufficient quantity of axonal regrowth, accelerated limb regeneration is apparently due to accelerated reinnervation.  相似文献   

4.
The goldfish optic nerve can regenerate after injury. To understand the molecular mechanism of optic nerve regrowth, we identified genes whose expression is specifically up-regulated during the early stage of optic nerve regeneration. A cDNA library constructed from goldfish retina 5 days after transection was screened by differential hybridization with cDNA probes derived from axotomized or normal retina. Of six cDNA clones isolated, one clone was identified as the Na,K-ATPase catalytic subunit alpha3 isoform by high- sequence homology. In northern hybridization, the expression level of the mRNA was significantly increased at 2 days and peaked at 5-10 days, and then gradually decreased and returned to control level by 45 days after optic nerve transection. Both in situ hybridization and immunohistochemical staining have revealed the location of this transient retinal change after optic nerve transection. The increased expression was observed only in the ganglion cell layer and optic nerve fiber layer at 5-20 days after optic nerve transection. In an explant culture system, neurite outgrowth from the retina 7 days after optic nerve transection was spontaneously promoted. A low concentration of ouabain (50-100 nm ) completely blocked the spontaneous neurite outgrowth from the lesioned retina. Together, these data indicate that up-regulation of the Na,K-ATPase alpha3 subunit is involved in the regrowth of ganglion cell axons after axotomy.  相似文献   

5.
Anterograde slow and fast axonal transport was examined in rats intoxicated with 2,5-hexanedione (1 g/kg/week) for 8 weeks. Distribution of radioactivity was measured in 3-mm segments of the sciatic nerve after labelling of proteins with [35S]methionine or [3H]leucine and glycoproteins with [3H]fucose. The axonal transport of the anterograde slow components was examined after 25 (SCa) and 10 days (SCb), in motor and sensory nerves. SCa showed an increased transport velocity in motor (1.25 +/- 0.08 mm/day versus 1.01 +/- 0.05 mm/day) and in sensory nerves (1.21 +/- 0.13 mm/day versus 1.06 +/- 0.07 mm/day). The relative amount of labelled protein in the SCa wave in both fiber systems was also increased. SCb showed unchanged transport velocity in motor as well as in sensory nerves, whereas the amount of label was decreased in the motor system. Anterograde fast transport in motor nerves was examined after intervals of 3 and 5 h, whereas intervals of 2 and 4 h were used for sensory nerves. Velocities and amounts of labelled proteins of the anterograde fast component remained normal. We suggest that the increase in protein transport in SCa reflects axonal regeneration.  相似文献   

6.
The organization of the axonal cytoskeleton was investigated by analyzing the solubility and transport profile of the major cytoskeletal proteins in motor axons of the rat sciatic nerve under normal and regenerating conditions. When extracted with the Triton-containing buffer at low temperature, 50% of tubulin and 30% of actin were recovered in the insoluble form resistant to further depolymerizing treatments. Most of this cold-insoluble form was transported in slow component a (SCa), the slower of the two subcomponents of slow axonal transport, whereas the cold-soluble form showed a biphasic distribution between SCa and SCb (slow component b). Changes in slow transport during regeneration were studied by injuring the nerve either prior to (experiment I) or after (experiment II) radioactive labeling. In experiment I where the transport of proteins synthesized in response to injury was examined, selective acceleration of SCb was detected together with an increase in the relative proportion of this component. In experiment II where the response of the preexisting cytoskeleton was examined, a shift from SCa to SCb of the cold-soluble form was observed. The differential distribution and response of the two forms of tubulin and actin suggest that the cold-soluble form may be more directly involved in axonal transport.  相似文献   

7.
Reversal of anterograde rapid axonal transport of four molecular forms of acetylcholinesterase (AChE) was studied in chick sciatic nerve during the 24-h period following a nerve transection. Reversal of AChE activity started ~1 h after nerve transection, and all the forms of the enzyme, except the monomeric ones, showed reversal of transport. The quantity of enzyme activity reversed 24 h after transection was twofold greater than that normally conveyed by retrograde transport. We observed no leakage of the enzyme at the site of the nerve transection and no reversal of AChE activity transport in the distal segment of the severed nerve, a result indicating that the material carried by retrograde axonal transport cannot be reversed by axotomy. Thus, a nerve transection induces both quantitative and qualitative changes in the retrograde axonal transport, which could serve as a signal of distal injury to the cell body. The velocity of reverse transport, measured within 6 h after transection, was found to be 213 mm/day, a value close to that of retrograde transport (200 mm/day). This suggests that the reversal taking place in severed sciatic nerve is similar to the anterograde-to-retrograde conversion process normally occurring at the nerve endings.  相似文献   

8.
Slow components of axonal transport: two cytoskeletal networks   总被引:45,自引:30,他引:15       下载免费PDF全文
We have identified two slowly moving groups of axonally transported proteins in guinea pig retinal ganglion cell axons (4). The slowest group of proteins, designated slow component a (SCa), has a transport rate of 0.25 mm/d and consists of tubulin and neurofilament protein. The other slowly transported group of proteins, designated slow components b (SCb), has a transport rate of 2-3 mm/d and consists of many polypeptides, one of which is actin (4). Our analyses of the transport kinetics of the individual polypeptides of SCa and SCb indicate that (a) the polypeptides of SCa are transported coherently in the optic axons, (b) the polypeptides of SCb are also transported coherently but completely separately from the SCa polypeptides, and (c) the polypeptides of SCa differ completely from those comprising SCb. We relate these results to our general hypothesis that slow axonal transport represents the movements of structural complexes of proteins. Furthermore, it is proposed that SCa corresponds to the microtubule-neurofilament network, and that SCb represents the transport of the microfilament network together with the proteins complexed with microfilaments.  相似文献   

9.
The axonal transport of the diverse isotubulins in the motor axons of the rat sciatic nerve was studied by two-dimensional polyacrylamide gel electrophoresis after intraspinal injection of [35S]methionine. 3 wk after injection, the nerve segments carrying the labeled axonal proteins of the slow components a (SCa) and b (SCb) of axonal transport were homogenized in a cytoskeleton-stabilizing buffer and two distinct fractions, cytoskeletal (pellet, insoluble) and soluble (supernatant), were obtained by centrifugation. About two-thirds of the transported-labeled tubulin moved with SCa, the remainder with SCb. In both waves, tubulin was found to be associated mainly with the cytoskeletal fraction. The same isoforms of tubulin were transported with SCa and SCb; however, the level of a neuron-specific beta-tubulin subcomponent, termed beta', composed of two related isotubulins beta'1 and beta'2, was significantly greater in SCb than in SCa, relative to the other tubulin isoforms. In addition, certain specific isotubulins were unequally distributed between the cytoskeletal and the soluble fractions. In SCa as well as in SCb, alpha'-isotubulins were completely soluble in the motor axons. By contrast, alpha' and beta'2-isotubulins, both posttranslationally modified isoforms, were always recovered in the cytoskeletal fraction and thus may represent isotubulins restricted to microtubule polymers. The different distribution of isotubulins suggests that a recruitment of tubulin isoforms, including specific posttranslational modifications of defined isoforms (such as, at least, phosphorylation of beta' and acetylation of alpha'), might be involved in the assembly of distinct subsets of axonal microtubules displaying differential properties of stability, velocity and perhaps of function.  相似文献   

10.
Following injury of sciatic motor axons in the rat, the rate of axonal outgrowth is faster if there has been a prior “conditioning” axotomy. The acceleration of outgrowth is due to an acceleration of SCb, the rate [slow (SC)] component of axonal transport that carries cytomatrix proteins; this occurs throughout the axon by 7 days after the conditioning axotomy (Jacob and McQuarrie, 1991a, J. Neurobiol. 22:570–583). To further characterize the conditioning lesion effect (CLE), it is important to know (1) the minimum effective conditioning interval (time between conditioning and testing lesions), (2) whether the cell body reaction is required, and (3) whether outgrowth accelerates after a single axotomy. Outgrowth distances were measured by radiolabeling all newly synthesized neuronal proteins and detecting those carried to growth cones by fast axonal transport. When the conditioning and testing lesions were made simultaneously (0 day conditioning interval), there was no CLE. With a conditioning interval of 3 days, there was a shortening of the initial delay (before the onset of outgrowth) without a change in outgrowth rate. With conditioning intervals of 7, 14, and 21 days, the rates of outgrowth were increased by 8%, 22%, and 11%, respectively. To determine whether the cell body reaction to axotomy is necessary for the CLE, a nonaxotomizing stimulus to axonal growth (partial denervation) was used in place of a conditioning axotomy. This had no effect on the rate of outgrowth from a testing lesion made 14 days later. Finally, we examined the possibility that outgrowth accelerates after a single lesion. Outgrowth was faster at 6–9 days after axotomy than at 3–6 days (p < 0.001), and accelerated further at 9–12 days (p < 0.001). We conclude that (1) the shortest effective conditioning interval is 3 days; (2) the cell body reaction is necessary for the CLE; (3) axonal outgrowth from a single axotomy accelerates in concert with the anabolic phase of the cell body reaction. The SCb motor is, in turn, upregulated by this reaction. This suggests that the SCb motor responds to a fast-transported signal that is a product of the cell body reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Phosphorylation of Proteins in Normal and Regenerating Goldfish Optic Nerve   总被引:2,自引:2,他引:0  
Within 6 h after radiolabeled phosphate was injected into the eye of goldfish, labeled acid-soluble and acid-precipitable material began to appear in the optic nerve and subsequently also in the lobe of the optic tectum, to which the optic axons project. From the rate of appearance of the acid-precipitable material, a maximal velocity of axonal transport of 13-21 mm/day could be calculated, consistent with fast axonal transport group II. Examination of individual proteins by two-dimensional gel electrophoresis revealed that approximately 20 proteins were phosphorylated in normal and regenerating nerves. These ranged in molecular weight from approximately 18,000 to 180,000 and in pI from 4.4 to 6.9. Among them were several fast transported proteins, including protein 4, which is the equivalent of the growth-associated protein GAP-43. In addition, there was phosphorylation of some recognizable constituents of slow axonal transport, including alpha-tubulin, a neurofilament constituent (NF), and another intermediate filament protein characteristic of goldfish optic axons (ON2). At least some axonal proteins, therefore, may become phosphorylated as a result of the axonal transport of a phosphate carrier. Some of the proteins labeled by intraocular injection of 32P showed changes in phosphorylation during regeneration of the optic axons. By 3-4 weeks after an optic tract lesion, five proteins, including protein 4, showed a significant increase in labeling in the intact segment of nerve between the eye and the lesion, whereas at least four others (including ON2) showed a significant decrease. When local incorporation of radiolabeled phosphate into the nerve was examined by incubating nerve segments in 32P-containing medium, there was little or no labeling of the proteins that showed changes in phosphorylation during regeneration. Segments of either normal or regenerating nerves showed strong labeling of several other proteins, particularly a group ranging in molecular weight from 46,000 to 58,000 and in pI from 4.9 to 6.4. These proteins were presumably primarily of nonneuronal origin. Nevertheless, if degeneration of the axons had been caused by removal of the eye 1 week earlier, most of the labeling of these proteins was abolished. This suggests that phosphorylation of these proteins depends on the integrity of the optic axons.  相似文献   

12.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

13.
The delivery of neurofilaments via axonal transport has been proposed as an important mechanism for regulating axonal caliber. If this hypothesis is correct, alterations in axonal caliber should appear coincident with changes in the delivery of neurofilaments to the axon. The purpose of this study was to determine whether alterations in the caliber of axons in the proximal stumps of transected motor fibers precede, coincide with, or occur substantially later than changes in the delivery of neurofilaments via axonal transport. Between 3 d and 12 wk after crushing the sciatic nerves of 7-wk-old rats, lumbar motor neurons were labeled by the intraspinal injection of [35S]methionine. In neurons labeled between 3 d and 6 wk after axotomy, the relative amount of neurofilament protein in the slow component, as reflected by the ratio of the radioactivities of the 145-kD neurofilament protein to tubulin, was reduced to 30-40% of the control value. Moreover, as determined by immunoreactivity on blots, the amounts of neurofilament protein and tubulin in these nerve fibers were reduced fourfold and twofold, respectively. Thus, changes in the ratio of labeled neurofilament protein to tubulin correlated with comparable changes in the quantities of these proteins in nerve fibers. This decrease in the quantity of neurofilament proteins delivered to axons coincided temporally with reductions in axonal caliber. After regeneration occurred, the delivery of neurofilament proteins returned to pre-axotomy levels (i.e., 8 wk after axotomy), and caliber was restored with resumption of normal age-related radial growth of these axons. Thus, changes in axonal caliber coincided temporally with alterations in the delivery of neurofilament proteins. These results suggest that the majority of neurofilaments in these motor fibers continuously move in the anterograde direction as part of the slow component of axonal transport and that the transport of neurofilaments plays an important role in regulating the caliber of these axons.  相似文献   

14.
S Neumann  C J Woolf 《Neuron》1999,23(1):83-91
Regeneration is abortive following adult mammalian CNS injury. We have investigated whether increasing the intrinsic growth state of primary sensory neurons by a conditioning peripheral nerve lesion increases regrowth of their central axons. After dorsal column lesions, all fibers stop at the injury site. Animals with a peripheral axotomy concomitant with the central lesion show axonal growth into the lesion but not into the spinal cord above the lesion. A preconditioning lesion 1 or 2 weeks prior to the dorsal column injury results in growth into the spinal cord above the lesion. In vitro, the growth capacity of DRG neurite is also increased following preconditioning lesions. The intrinsic growth state of injured neurons is, therefore, a key determinant for central regeneration.  相似文献   

15.
The limb regenerative capacity and the quantity of innervation (the percentage of a cross-sectional area of amputation forelimb stump occupied by nerves) in the pond frog, Rana brevipoda porosa, was investigated in postmetamorphic froglets and adults of various sizes by means of amputating forelimbs through the zeugopodium. Nearly all the amputated limbs of newly metamorphosed froglets, 18-19 mm in snout-vent length, showed heteromorphic regeneration. However, the larger the body size, the lower the presence of limb regeneration. Limb regenerative capacity was completely lost in froglets and adults with snout-vents larger than 35 mm. The quantity of innervation of limbs was highest in newly metamorphosed froglets, gradually decreasing with growth. The nerve quantity in adults with a snout-vent length between 60-67 mm was approximately half that of the froglets. When the nerve supply was augmented by deviating ipsilateral sciatic nerve bundles to the forelimb stump, almost all limbs, which were usually non-regenerative with normal innervation, regenerated heteromorphically. These results show that the decline in limb regenerative capacity during postmetamorphic growth is in part attributable to the reduction in innervation levels to below the threshold level required for regeneration.  相似文献   

16.
Transferrin, a plasma protein required for proliferation of normal and malignant cells, is abundant in peripheral nerves of birds and mammals and becomes more concentrated in this tissue during nerve regeneration. We are testing the hypothesis that this factor is involved in the growth-promoting effect of nerves during the early, avascular phase of amphibian limb regeneration. A sensitive enzyme-linked immunosorbent assay for axolotl transferrin was developed and used to determine whether this protein meets certain criteria expected of the trophic factor(s) from nerves. During limb regeneration adult sciatic nerves greatly increased their content of transferrin, which immunohistochemistry revealed was distributed in both axons and Schwann cells. Using the double ligature method with sciatic nerves in vivo, it was determined that transferrin is carried by fast anterograde axonal transport at all stages of limb regeneration. An approach based on multicompartment organ culture demonstrated that fast-transported transferrin was secreted in physiologically significant amounts at distal ends of regenerating axons. Finally, the concentration of transferrin in the distal region of larval axolotl limb stumps was found to decrease directly and rapidly in response to axotomy. Since transferrin is important for both axonal regeneration and cell cycling, the present data have significance for various aspects of nerve's trophic activity during limb regeneration.  相似文献   

17.
Microtubule-associated proteins (MAPs) in neurons establish functional associations with microtubules, sometimes at considerable distances from their site of synthesis. In this study we identified MAP 1A in mouse retinal ganglion cells and characterized for the first time its in vivo dynamics in relation to axonally transported tubulin. A soluble 340-kD polypeptide was strongly radiolabeled in ganglion cells after intravitreal injection of [35S]methionine or [3H]proline. This polypeptide was identified as MAP 1A on the basis of its co-migration on SDS gels with MAP 1A from brain microtubules; its co-assembly with microtubules in the presence of taxol or during cycles of assembly-disassembly; and its cross-reaction with well-characterized antibodies against MAP 1A in immunoblotting and immunoprecipitation assays. Glial cells of the optic nerve synthesized considerably less MAP 1A than neurons. The axoplasmic transport of MAP 1A differed from that of tubulin. Using two separate methods, we observed that MAP 1A advanced along optic axons at a rate of 1.0-1.2 mm/d, a rate typical of the Group IV (SCb) phase of transport, while tubulin moved 0.1-0.2 mm/d, a group V (SCa) transport rate. At least 13% of the newly synthesized MAP 1A entering optic axons was incorporated uniformly along axons into stationary axonal structures. The half-residence time of stationary MAP 1A in axons (55-60 d) was 4.6 times longer than that of MAP 1A moving in Group IV, indicating that at least 44% of the total MAP 1A in axons is stationary. These results demonstrate that cytoskeletal proteins that become functionally associated with each other in axons may be delivered to these sites at different transport rates. Stable associations between axonal constituents moving at different velocities could develop when these elements leave the transport vector and incorporate into the stationary cytoskeleton.  相似文献   

18.
The rate of regeneration of rat sciatic nerve sensory axons was measured using the pinch-reflex test method, and confirmed by studying the transport of labelled protein into the regenerating axons. For nerves receiving a single test crush lesion the rate was 4.02 ± 0.03 (SE) mm/day. For nerves with a conditioning lesion made at the knee seven days prior to the test lesion at the hip the rate was 5.73 ± 0.06 mm/day, and for nerves where both conditioning and test lesions were made at the same site (hip or knee) but separated by seven days, the rate was 6.76 ± 0.04 mm/day, a 68% increase over the normal rate, showing that pre-degeneration of the nerve distal to the site of the test lesion increases the rate of regeneration. It is concluded that the rate of axon regeneration can be influenced by the environment through which the regenerating axons grow.  相似文献   

19.
Between 3 and 4 days after transection of cat sciatic nerve, Schwann cell-associated premitotic activity spreads anterogradely along degenerating distal nerve stumps at a rate of approximately 200 mm/day. We investigated whether fast anterograde axonal transport contributes to the initiation of this component of Wallerian degeneration. Axonal transport was blocked in intact and transected cat sciatic nerves by focally chilling a proximal segment to temperatures below 11 degrees C for 24 hr. Incorporation of [3H]thymidine (a marker of premitotic DNA synthesis) was then measured 3 and 4 days posttransection in cold blocked- and control-degenerating nerves. Effects of cold block prior to and concomitant with nerve transection were studied. Results failed to support the hypothesis that Schwann-cell premitotic activity after axotomy is associated with entry into the axon of mitogenic substances and their anterograde fast transport along the distal stump. Instead, data suggested that progressive anterograde failure of fast anterograde transport distal to transection serves to effect the Schwann-cell premitotic response to axotomy.  相似文献   

20.
The composition of proteins conveyed by fast axonal transport in growing or regenerating axons is different from that of intact, mature axons. Consistent alterations have been observed in several different types of neurons, but adult peripheral axons (rabbit hypoglossal motoneurons) seemed to be exceptions because during their regeneration there was no increased labelling of a 23 kilodalton (kD) protein associated with the growth state. We examined the composition of fast-transported proteins, labelled by application of [35S]methionine to the hypoglossal nuclei, in intact and regenerating hypoglossal nerves of the rat. Using one- and two-dimensional electrophoresis we detected both increases and decreases in the labelling of specific polypeptides during regeneration. In particular, there was increased labelling of a 23 kD polypeptide. Changes were maximal 7 days after axotomy and subsided thereafter, coincident with reinnervation of the tongue. We conclude that hypoglossal axons show the same changes in transported protein composition which are characteristic of the growth state in other axons. Thus, we have strengthened the correlation between the growth state and changes in synthesis of a set of polypeptides of unknown function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号