首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans is an important virulence factor, but relatively little is known about its architecture. We applied a combination of radiological, chemical, and serological methods to investigate the structure of this polysaccharide capsule. Exposure of C. neoformans cells to gamma radiation, dimethyl sulfoxide, or radiolabeled monoclonal antibody removed a significant part of the capsule. Short intervals of gamma irradiation removed the outer portion of the cryptococcal capsule without killing cells, which could subsequently repair their capsules. Survival analysis of irradiated wild-type, acapsular mutant, and complemented mutant strains demonstrated that the capsule contributed to radioprotection and had a linear attenuation coefficient higher than that of lead. The capsule portions remaining after dimethyl sulfoxide or gamma radiation treatment were comparable in size, 65 to 66 microm3, and retained immunoreactivity for a monoclonal antibody to glucuronoxylomannan. Simultaneous or sequential treatment of the cells with dimethyl sulfoxide and radiation removed the remaining capsule so that it was not visible by light microscopy. The capsule could be protected against radiation by either of the free radical scavengers ascorbic acid and sorbitol. Sugar composition analysis of polysaccharide removed from the outer and inner parts of the capsule revealed significant differences in glucuronic acid and xylose molar ratios, implying differences in the chemical structure of the constituent polysaccharides. Our results provide compelling evidence for the existence of two zones in the C. neoformans capsule that differ in susceptibility to dimethyl sulfoxide and radiation and, possibly, in packing and composition.  相似文献   

2.
The capsule of Cryptococcus neoformans, the principal virulence factor of this fungus, is composed primarily of polysaccharide. The predominant component of the polysaccharide capsule is glucuronoxylomannan (GXM), a compound with potent immunoregulatory properties. GXM is bound and internalized by natural immune cells affecting innate and subsequent adaptive immune response. The cellular pattern recognition receptors involved in GXM binding include toll-like receptor (TLR)4, CD14, TLR2, CD18, Fc gamma receptor II (FcgammaRPi). This multiple cross-linking leads to a suppressive outcome that is arrested and even reversed by protective antibodies to GXM. This review analyzes the immunosuppressive effects induced by capsular material, considering its pattern recognition receptors, and dissects the mechanism of monoclonal antibody shifting to immunoactivation.  相似文献   

3.
Molecular architecture of the Cryptococcus neoformans capsule   总被引:4,自引:0,他引:4  
Many microbes are surrounded by phagocytosis-inhibiting capsules. We took advantage of the large size of the polysaccharide capsule of the pathogenic yeast Cryptococcus neoformans to examine capsular architecture and the relationship between molecular architecture and the interaction of the capsule with potentially opsonic serum proteins. Our experimental design used complementary approaches in which (i) assessment of permeability to macromolecules of different Stokes radii; (ii) determination of the binding of Fab fragments of anticapsular antibodies as a measure of matrix density; (iii) capsular deconstruction by treatment with dimethyl sulphoxide; and (iv) evaluation of capsule plasticity, were used to probe the molecular structure of the capsule. The results showed that the capsule is a matrix with a variable porosity that increases with distance from the cell wall. A high density of the matrix at the capsule interior prevents penetration of large macromolecules to sites near the cell wall. In contrast, the capsular edge that is the interface with phagocytes presents capsular polysaccharide in a very low density that exhibits considerable plasticity and permeability to macromolecules. Notably, the capsule of yeast cells harvested from infected tissue showed a greater matrix density than yeast cells grown in vitro under capsule induction conditions.  相似文献   

4.
The capsule of the human pathogenic fungus Cryptococcus neoformans presents the immune system with a formidable problem for phagocytosis. Capsule-mediated activation of the alternative complement (C) pathway results in component 3 (particularly, C3) binding to the capsule near the cell wall surface. Hence, for cells with large capsule, C3 cannot interact with the complement receptor (CR) and is not opsonic. However, C activation in either immune serum or in the presence of monoclonal antibody (mAb) to capsular polysaccharide localizes C3 to the capsular edge. When C. neoformans cells were coated with both C and antibody (Ab) opsonins, Ab bound first and promoted C3 deposition at the edge of the capsule. The mechanism for the Ab-mediated change in C3 localization to the capsule edge involved both classical C pathway activation and steric hindrance preventing C3 penetration into the capsule. The change in C3 localization changed the mode of phagocytosis in macrophages, such that localizing C3 at the edge of the capsule allowed phagocytosis through C3-CR3 and C3-CR4 interactions, which did not occur in serum without Ab. These findings reveal a new mechanism of Ab action whereby Abs affect the location of C3 and its interaction with its receptor in macrophages depending on the immunoglobulin concentration.  相似文献   

5.
The capsule of Cryptococcus neoformans can undergo dramatic enlargement, a phenomenon associated with virulence. A prior study that used Ab to the capsule as a marker for older capsular material concluded that capsule growth involved the intermixing of new and old capsular material with displacement of older capsular polysaccharide towards the surface. Here we have revisited that question using complement (C), which binds to capsular polysaccharide covalently, and cannot redistribute by dissociation and binding at different sites. The experimental approach involved binding of C to cells with small capsules, inducing capsule growth, and following the location of C relative to the cell wall as the capsule enlarged. C remained close to the cell wall during capsule growth, indicating that capsule enlargement occurred by addition of new polysaccharide near the capsule edge. This conclusion was confirmed by an independent method that employed radioactive metabolic labelling of newly synthesized capsule with 3H-mannose followed by gradual capsular stripping with gamma-radiation. Capsule growth proceeded to a certain size, which was a function of cell size, and was not degraded when the cells were transferred to a non-inducing medium. During budding, an opening appeared in the capsule of the mother cell that permitted the nascent bud to separate. Scanning EM suggested that a physical separation formed between the capsules of the mother and daughter cells during budding, which may avoid mixture between both capsules. Our results indicate that C. neoformans capsular enlargement also occurs by apical growth and that budding results in capsular rearrangements.  相似文献   

6.
Infection by Cryptococcus neoformans begins with inhalation of infectious propagules. Fungi reach the lung tissue and interact with epithelial cells in a crucial but poorly understood process. In this study, the interaction of C. neoformans with the human alveolar epithelial cell lineage A549 was investigated, focusing on the relevance of the capsular polysaccharide in this process. The association of encapsulated strains with A549 cells was significantly inhibited by a monoclonal antibody to glucuronoxylomannan (GXM), a major component of the cryptococcal capsule. A purified preparation of GXM produced similar results, suggesting the occurrence of surface receptors for this polysaccharide on the surface of alveolar cells. A549 cells were in fact able to bind soluble GXM, as confirmed by indirect immunofluorescence analysis using the anti-polysaccharide antibody. C. neoformans is internalized after GXM-mediated interaction with A549 cells in a process that culminates with death of host cells. Our results suggest that C. neoformans can use GXM for attachment to alveolar epithelia, allowing the fungus to reach the intracellular environment and damage host cells through still uncharacterized mechanisms.  相似文献   

7.
Cryptococcus neoformans is a facultative intracellular pathogen. The most distinctive feature of C. neoformans is a polysaccharide capsule that enlarges depending on environmental stimuli. The mechanism by which C. neoformans avoids killing during phagocytosis is unknown. We hypothesized that capsule growth conferred resistance to microbicidal molecules produced by the host during infection, particularly during phagocytosis. We observed that capsule enlargement conferred resistance to reactive oxygen species produced by H(2)O(2) that was not associated with a higher catalase activity, suggesting a new function for the capsule as a scavenger of reactive oxidative intermediates. Soluble capsular polysaccharide protected C. neoformans and Saccharomyces cerevisiae from killing by H(2)O(2). Acapsular mutants had higher susceptibility to free radicals. Capsular polysaccharide acted as an antioxidant in the nitroblue tetrazolium (NBT) reduction coupled to beta-nicotinamide adenine dinucleotide (NADH)/phenazine methosulfate (PMS) assay. Capsule enlargement conferred resistance to antimicrobial peptides and the antifungal drug Amphotericin B. Interestingly, the capsule had no effect on susceptibility to azoles and increased susceptibility to fluconazole. Capsule enlargement reduced phagocytosis by environmental predators, although we also noticed that in this system, starvation of C. neoformans cells produced resistance to phagocytosis. Our results suggest that capsular enlargement is a mechanism that enhances C. neoformans survival when ingested by phagocytic cells.  相似文献   

8.
Cryptococcus neoformans capsular polysaccharide is composed of at least two components, glucuronoxylomannan (GXM) and galactoxylomannans (GalXM). Although GXM has been extensively studied, little is known about the location of GalXM in the C. neoformans capsule, in part because there are no serological reagents specific to this antigen. To circumvent the poor immunogenicity of GalXM, this antigen was conjugated to protective antigen from Bacillus anthracis as a protein carrier. The resulting conjugate elicited antibodies that reacted with GalXM in mice and yielded an immune serum that proved useful for studying GalXM in the polysaccharide capsule. In acapsular cells, immune serum localized GalXM to the cell wall. In capsulated cells, immune serum localized GalXM to discrete pockets near the capsule edge. GalXM was abundant on the nascent capsules of budding daughter cells. The constituent sugars of GalXM were found in vesicle fractions consistent with vesicular transport for this polysaccharide. In addition, we generated a single-chain fraction variable fragment antibody with specificity to oxidized carbohydrates that also produced punctate immunofluorescence on encapsulated cells that partially colocalized with GalXM. The results are interpreted to mean that GalXM is a transient component of the polysaccharide capsule of mature cells during the process of secretion. Hence, the function of GalXM appears to be more consistent with that of an exopolysaccharide than a structural component of the cryptococcal capsule.  相似文献   

9.
The capsular swelling or quellung reaction was reported almost 100 years ago and described the effect of Abs on the appearance of microbial capsules. Despite widespread use to assess Ab binding to capsules, relatively little is known as to the mechanism of this effect or its biological consequences. The fungus Cryptococcus neoformans is an attractive system to study capsule reactions because it has a large polysaccharide capsule that is readily visible by light microscopy. When viewed by differential interference contrast microscopy, binding of mAb to C. neoformans cells produced two distinct capsular reactions that depended on the Ab epitope specificity and the yeast serotype. In the first pattern, termed "rim," the capsule appears transparent with a highly refractive outer edge. In the second pattern, termed "puffy," the capsule appears opaque and lacks a highly refractive outer rim. mAbs that bind with a rim pattern suppress the overall rate of C3 deposition on the yeast via the classical and alternative complement pathways. In contrast, mAbs that bind with a puffy pattern do not affect C3 deposition. Protective and nonprotective IgM mAbs produce rim and puffy patterns, respectively. These results indicate that: 1) capsule reactions are a consequence of Ab-induced changes in capsular refractive index; 2) the type of capsule reaction depends on the Ab specificity; and 3) Ab-induced changes in refractive index correlate with biological activities important for host defense against C. neoformans. Our results provide the first evidence associating distinct capsule reaction patterns with Ab biological activity.  相似文献   

10.
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. We describe the characteristics of C. neoformans biofilm development using a microtiter plate model, microscopic examinations, and a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay to observe the metabolic activity of cryptococci within a biofilm. A strong correlation between XTT and CFU assays was demonstrated. Chemical analysis of the exopolymeric material revealed sugar composition consisting predominantly of xylose, mannose, and glucose, indicating the presence of other polysaccharides in addition to glucurunoxylomannan. Biofilm formation was affected by surface support differences, conditioning films on the surface, characteristics of the medium, and properties of the microbial cell. A specific antibody to the capsular polysaccharide of this fungus was used to stain the extracellular polysaccharide matrix of the fungal biofilms using light and confocal microscopy. Additionally, the susceptibility of C. neoformans biofilms and planktonic cells to environmental stress was investigated using XTT reduction and CFU assays. Biofilms were less susceptible to heat, cold, and UV light exposition than their planktonic counterparts. Our findings demonstrate that fungal biofilm formation is dependent on support surface characteristics and that growth in the biofilm state makes fungal cells less susceptible to potential environmental stresses.  相似文献   

11.
Capsule production is common among bacterial species, but relatively rare in eukaryotic microorganisms. Members of the fungal Cryptococcus genus are known to produce capsules, which are major determinants of virulence in the highly pathogenic species Cryptococcus neoformans and Cryptococcus gattii. Although the lack of virulence of many species of the Cryptococcus genus can be explained solely by the lack of mammalian thermotolerance, it is uncertain whether the capsules from these organisms are comparable to those of the pathogenic cryptococci. In this study, we compared the characteristic of the capsule from the non-pathogenic environmental yeast Cryptococcus liquefaciens with that of C. neoformans. Microscopic observations revealed that C. liquefaciens has a capsule visible in India ink preparations that was also efficiently labeled by three antibodies generated to specific C. neoformans capsular antigens. Capsular polysaccharides of C. liquefaciens were incorporated onto the cell surface of acapsular C. neoformans mutant cells. Polysaccharide composition determinations in combination with confocal microscopy revealed that C. liquefaciens capsule consisted of mannose, xylose, glucose, glucuronic acid, galactose and N-acetylglucosamine. Physical chemical analysis of the C. liquefaciens polysaccharides in comparison with C. neoformans samples revealed significant differences in viscosity, elastic properties and macromolecular structure parameters of polysaccharide solutions such as rigidity, effective diameter, zeta potential and molecular mass, which nevertheless appeared to be characteristics of linear polysaccharides that also comprise capsular polysaccharide of C. neoformans. The environmental yeast, however, showed enhanced susceptibility to the antimicrobial activity of the environmental phagocytes, suggesting that the C. liquefaciens capsular components are insufficient in protecting yeast cells against killing by amoeba. These results suggest that capsular structures in pathogenic Cryptococcus species and environmental species share similar features, but also manifest significant difference that could influence their potential to virulence.  相似文献   

12.
We present a new method to measure capsule size in the human fungal pathogen Cryptococcus neoformans that avoids the limitations and biases inherent in India ink measurements. The method is based on the use of gamma-radiation, which efficiently releases the capsule from the cell. By comparing the volume of irradiated and non-irradiated cells, one can accurately estimate the relative size of the capsule per cell. This method was also used to obtain an estimate of the capsule weight and water content. The C. neoformans capsule is a highly hydrated structure in all the conditions measured. However, after capsule enlargement, the amount of capsular polysaccharide significantly increases, suggesting a that capsule growth has a high energy cost for the cell.  相似文献   

13.
The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide (PS) capsule and releases copious amounts of PS into cultures and infected tissues. The capsular PS is a major virulence factor that can elicit protective antibody responses. PS recovered from culture supernatants has historically provided an ample and convenient source of material for structural and immunological studies. Two major assumptions in such studies are that the structural features of the exopolysaccharide material faithfully mirror those of capsular PS and that the isolation methods do not change PS properties. However, a comparison of exopolysaccharide made by two isolation techniques with capsular PS stripped from cells with gamma radiation or dimethyl sulfoxide revealed significant differences in glycosyl composition, mass, size, charge, viscosity, circular-dichroism spectra, and reactivity with monoclonal antibodies. Our results strongly suggest that exopolysaccharides and capsular PS are structurally different. A noteworthy finding was that PS made by cetyltrimethylammonium bromide precipitation had a larger mass and a different conformation than PS isolated by concentration and filtration, suggesting that the method most commonly used to purify glucuronoxylomannan alters the PS. Hence, the method used to isolate PS can significantly influence the structural and antigenic properties of the product. Our findings have important implications for current views of the relationship between capsular PS and exopolysaccharides, for the generation of PS preparations suitable for immunological studies, and for the formulation of PS-based vaccines for the prevention of cryptococcosis.  相似文献   

14.
The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca(2+) in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.  相似文献   

15.
Ab specificity is determined by V region sequence. The murine Mab 18B7 (IgG1) binds to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan and produces annular immunofluorescence (IF) on yeast cells. The heavy and light V regions of 18B7 were expressed with the human C regions micro, gamma 1, gamma 2, gamma 3, gamma 4, and alpha1, and the specificity and binding properties of these mouse-human chimeric (ch) Abs was determined. The chIgG1, chIgG2, chIgG4, and the chIgA produced annular IF, whereas the IgM and IgG3 produced punctate IF, despite identical V region sequences. Competition experiments with murine Abs that competed with mAb 18B7 and binding assays to peptide mimetics of glucuronoxylomannan provided additional evidence for altered specificity in some of the ch Abs. Expression of 18B7 heavy V region with murine micro C region produced IgM with a punctate IF, indicating that a change in fine specificity also accompanied the change from murine IgG1 to IgM. Our results show that Ab fine specificity can be a function of isotype. This phenomenon may be most apparent for Abs that bind to Ag with repeating epitopes, such as polysaccharides, where the quarternary structure of the Ag-Ab complex may be influenced by such constraints as Fab-Fab angles, Fc-Fc interactions, Ab size, and solvent accessibility to exposed surfaces. Alterations in Ab fine specificity following isotype change could have important implications for current concepts on the generation of secondary Ab responses to certain Ags and for the isotype preference observed in Abs to polysaccharides.  相似文献   

16.
The capsule of Cryptococcus neoformans is a complex structure whose assembly requires intermolecular interactions to connect its components into an organized structure. In this study, we demonstrated that the wheat germ agglutinin (WGA), which binds to sialic acids and beta-1,4-N-acetylglucosamine (GlcNAc) oligomers, can also bind to cryptococcal capsular structures. Confocal microscopy demonstrated that these structures form round or hooklike projections linking the capsule to the cell wall, as well as capsule-associated structures during yeast budding. Chemical analysis of capsular extracts by gas chromatography coupled to mass spectrometry and high-pH anion-exchange chromatography suggested that the molecules recognized by WGA were firmly associated with the cell wall. Enzymatic treatment, competition assays, and staining with chemically modified WGA revealed that GlcNAc oligomers, but not sialic acids, were the molecules recognized by the lectin. Accordingly, treatment of C. neoformans cells with chitinase released glucuronoxylomannan (GXM) from the cell surface and reduced the capsule size. Chitinase-treated acapsular cells bound soluble GXM in a modified pattern. These results indicate an association of chitin-derived structures with GXM and budding in C. neoformans, which may represent a new mechanism by which the capsular polysaccharide interacts with the cell wall and is rearranged during replication.  相似文献   

17.
A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists.  相似文献   

18.
Cryptococcus neoformans is a soil-dwelling fungus that causes life-threatening illness in immunocompromised individuals and latently infects many healthy individuals. C. neoformans, unlike other human pathogenic fungi, is surrounded by a polysaccharide capsule that is essential for survival and enables C. neoformans to thwart the mammalian immune system. The capsule is a dynamic structure that undergoes changes in size and rearranges during budding. Here, the latest information and unresolved questions regarding capsule synthesis, structure, assembly, growth and rearrangements are discussed along with the concept that self-assembly is important in capsular dynamics.  相似文献   

19.
The encapsulated fungus Cryptococcus neoformans is a common cause of life-threatening disease in immunocompromised individuals. Its major virulence determinant is the polysaccharide (PS) capsule. An unsolved problem in cryptococcal biology is whether the PSs composing the capsule are linear or complex branched polymers, as well as the implications of this structural composition in pathogenesis. In this study we approached the problem by combining static and dynamic light scattering, viscosity analysis, and high-resolution microscopy and correlated the findings with biological properties. Analysis of the dependence of capsular PS molecular mass and the radius of gyration provided strong evidence against a simple linear PS configuration. Shape factors calculated from light scattering measurements in solution revealed values consistent with polymer branching. Furthermore, viscosity measurements provided complementary evidence for structural branching. Electron microscopy showed PS spherical-like structures similar to other branched PS. Finally, we show that the capacity of capsular PS to interfere in complement-mediated phagocytosis, inhibit nitric oxide production by macrophage-like cells, protect against reactive oxygen species, antibody reactivity and half-life in serum were influenced by the degree of branching, providing evidence for the notion that PS branching is an important parameter in determining the biological activity of C. neoformans PS.  相似文献   

20.
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号