首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Measurements of phytochrome by (A725–815 nm) were completely suppressed at chlorophyll concentrations of the order of 20–40 g g-1 f.wt. in vivo and 37 g cm-3 in vitro, and the readings were reduced by 50% at only 12 g cm-3 in vitro. At these concentrations of chlorophyll in aqueous methanol, the loss of phytochrome signal in vitro appeared to be due to failure of phytochrome photoconversion rather than to interference with A measuremebt by chlorophyll fluorescence in the 125/815 nm measuring beam.Abbreviations Chl chlorophyll - P phytochrome - Pr and Pfr phytochrome in red absorbing and far-red absorbing forms  相似文献   

2.
Che-Jun Pjon  Masaki Furuya 《Planta》1968,81(4):303-313
Summary In-vivo phytochrome determinations in totally etiolated rice seedlings with a dual-wavelength spectrophotometer showed that on a fresh weight basis phytochrome concentration was highest in the coleoptile apex (0.175 of mean) ( O.D.) g-1 (fresh weight). The age of the seedlings had little effect on the pattern of phytochrome distribution in the coleoptiles.The extent of growth inhibition observed 2 days after the irradiations was proportional to the logarithm of P fr amount in the coleoptiles at the time of initial exposure to either red or blue light. Ultraviolet irradiation, however, did not induce either reversible growth inhibition or optically detectable phytochrome changes in vivo.After the conversion of P r to P fr bya brief red irradiation, non-photochemical transformation of phytochrome was observed in intact coleoptile tissues. Most of the optically measurable P fr disappeared within 6 hours at 27°, when the total ( O.D.) decreased to about one fifth of the original level. The optical data did not agree with the fact that 50% of the initial physiological reversibility was still observed 9 hours later. No significant difference in dark transformation rate was seen between intact and excised coleoptile tissues.Abbreviations P r red light absorbing form of phytochrome - P fr far-red light absorbing form of phytochrome - ( O.D.) the change in the optical density difference reading at two wavelengths, following irradiation of the sample with actinic sources of red and far-red light - UV ultraviolet light  相似文献   

3.
S. Frosch  H. Mohr 《Planta》1980,148(3):279-286
Carotenoid accumulation in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by light. Besides the stimulatory function of phytochrome in carotenogenesis the experiments reveal the significance of chlorophyll accumulation for the accumulation of larger amounts of acrotenoids. A specific blue light effect was not found. The data suggest that light exerts its control over carotenoid biogenesis through two separate mechanisms: A phytochrome regulation of enzyme levels before a postulated pool of free carotenoids, and a regulation by chlorophyll draining the pool by complex-formation.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR high irradiance reaction (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pfof total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Pfof], wavelength dependent photoequilibrium of the phytochrome system - red red light - fr far-red light  相似文献   

4.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

5.
After a pre-treatment with red light, hair formation at the growing tip of the siphonaceous green alga Acetabularia mediterranea Lamour. (= A. acetabulum (L.) Silva) can be induced by a pulse of blue light. Red light is needed again after the inductive blue-light pulse if the new whorl of hairs is to develop within the next 24 h. In order to investigate the role of this red light, the duration of the red irradiation was varied and combined with periods of darkness. The response of hair-whorl formation was dependent on the total amount of red light, regardless of whether the red irradiation followed the blue pulse immediately or was separated from it by a period of darkness. Furthermore, periods of exposure to the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1-1dimethylurea had a similar effect to darkness. Both observations indicate that this red irradiation acts as a light source for photosynthesis. Whether or not the red light had an additional effect via phytochrome was tested in another type of experiment. The dependence of hair-whorl formation on red-light irradiance in the presence of simultaneous far-red irradiation was determined for the pre-irradiation period as well as for the irradiation period after the blue pulse. In both experiments, far-red light caused a small promotion of hair-whorl formation when low irradiances of red light were used. However, these differences were attributable to a low level of photosynthetic activity (which in fact was measurable) caused by red light reflected in the growth chamber. Furthermore, lowering the proportion of active phytochrome by far-red light would be expected to suppress hair-whorl formation. The influence of far-red light was also tested in a strain of Acetabularia mediterranea that developed hair whorls in about 20% of cells even when kept in complete darkness after the blue-light pulse. Far-red irradiation had no effect. These results strongly indicate that phytochrome is not involved in hair-whorl formation. Rather it is concluded that the effects of red light are caused by photosynthesis.Abbreviation DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

6.
U. Homeyer  G. Schultz 《Planta》1988,176(3):378-382
The energy-dependent transport of phenylalanine into isolated vacuoles of barley (Hordeum vulgare L.) mesophyll protoplasts has been studied by silicone-layer floatation filtering. The uptake of this aromatic amino acid into the vacuolar compartment is markedly increased by MgATP, showing saturation kinetics; the K m values were 0.5 mM for MgATP and 1.2 mM for phenylalanine. V max for phenylalanine transport was estimated to 140 nmol phenylalanine·(mg·Chl)-1·h-1. The transport shows a distinct pH optimum at 7.3 and is markedly inhibited by 40 mM nitrate. Azide (1 mM) and vanadate (400 M) had no or little effect on rates of transport while p-fluorophenylalanine seemed to be an effective inhibitor, indicating a possible competition at an amino-acid carrier. Ionophores such as valinomycin, nigericin or gramicidin were strong inhibitors of phenylalanine transport, indicating that this process is coupled to both the transmembrane pH gradient (pH) and the transmembrane potential ().Abbreviations and symbols BSA bovine serum albumin - Chl chlorophyll - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - pH transmembrane pH gradient - transmembrane potential  相似文献   

7.
M. G. Holmes  W. H. Klein 《Planta》1985,166(3):348-353
Observations made with primary leaves of Phaseolus vulgaris L. demonstrated that phytochrome modulates light-induced stomatal movement. Removal of the far-red-absorbing form of the pigment (Pfr) with far-red (FR) radiation decreased the time required by the stomata to reach maximal opening following a dark-to-light transition; this effect of FR was fully reversible with red. Removal of Pfr with FR also decreased the time required to reach maximal closure following a light-to-dark transition, and the rate of closure was dependent on the final irradiation treatment before darkness. No evidence was found for phytochrome involvement in determining stomatal aperture under constant conditions of either darkness of light.Abbreviations and symbols Chl chlorophyll - D darkness - FR far-red - phytochrome photostationary state - Pfr, Pr FR- and R-absorbing forms of phytochrome, respectively - R red  相似文献   

8.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

9.
Native phytochrome from Avena sativa L. is homogeneous with a monomeric molecular weight of 124 kdalton; 6–10 kdalton larger than the heterogeneous 120 kdalton preparations previously considered to be undegraded (Vierstra and Quail, 1982, Proc. Natl. Acad. Sci. USA, 79: 5272–5276). The phototransformation difference spectrum (Pr-Pfr) of 124 kdalton phytochrome measured in crude extracts has a minimum in the farred region at 730 nm, the same as that observed in vivo. These spectral properties contrast with those of 120 kdalton phytochrome purified by column immunoaffinity chromatography where the difference minimum is at 724 nm. When 124 kdalton phytochrome is incubated as Pr in crude extracts, the difference minimum shifts progressively to shorter wavelengths (from 730 to 722 nm) concomitant with the proteolytic degradation of the chromoprotein to the mixture of 118 and 114 kdalton species that comprise 120 kdalton phytochrome preparations. These two effects are inhibited in concert by the serine protease inhibitor, phenylmethylsulfonylfluoride, and or maintenance of the phytochrome in the Pfr form. These results provide further evidence that 124 kdalton phytochrome is the native molecule in Avena and indicate that the peptide segments removed by proteolysis of the Pr form are important to the pigment's spectral integrity. The present data thus resolve the previously unsettled question of why the Pfr form of 120 kdalton phytochrome isolated by various procedures from Avena has been found to absorb at shorter wavelengths than that observed in vivo. Previous spectral studies with 120 kdalton phytochrome preparations are open to reexamination.Abbreviations, symbols PMSF phenylmethylsulfonylfluoride - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - Ig immunoglobulin - Aminimum, Amaximum phototransformation difference spectrum (Pr-Pfr) minimum and maximum - Ar/Afr ratio spectral change ratio  相似文献   

10.
Characterisation of a new monoclonal antibody (mAb), designated LAS 41, directed against 124-kilodalton (kDa) etiolated-oat (Avena sativa L.) phytochrome, indicates that it recognises an epitope unique to the red-light-absorbing form, Pr. In a solid-phase enzyme-linked immunosorbent assay (ELISA), LAS 41 exhibits a seven- to eight-fold higher affinity for Pr than for the far-red-light-absorbing form of phytochrome, Pfr. In addition, in immunoprecipitation assays LAS 41 effectively precipitates 100% of phytochrome presented as Pr but only precipitates a maximum of 24.5% of phytochrome presented as Pfr. These values are indicative of binding exclusively to Pr. Peptide-mapping studies show that LAS 41 recognises and epitope located within a region 6–10 kDa from the aminoterminus of the phytochrome molecule. Since binding of LAS 41 to Pr induces alterations in the spectral properties of Pr, this indicates that at least part of the 4 kDa domain to which the antibody binds is essential for protein-chromophore interaction. Subsequent photoconversion of LAS 41-Pr complexes produces native Pfr spectra, with concomitant production of free antibody and antigen, as shown by a modified ELISA. The specificity of LAS 41 for Pr has facilitated the purification of Pfr which is free of contaminating Pr. This has enabled direct determination of the mole fraction of Pfr established by red light to be 0.874.Abbreviations ELISA enzyme-linked immunsorbent assay - kDa kilodalton - mAb monoclonal antibody - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - (A) difference in absorbance (A 665 Pr –A 730 Pr )-(A 665 Pfr –A 730 Pfr ) - Ar/Afr spectral change ratio (SCR) - max mole fraction of Pfr following saturating red light  相似文献   

11.
A 1-min light pulse delivered to mustard seedlings (Sinapis alba L.) 60 h after sowing initiates the release of cotyledonary 5-aminolaevulinate (ALA) accumulation which continues for at least 2 h in the dark. Phytochrome (P fr) increases the rate of ALA accumulation after a 24-h red light pretreatment but is not the trigger for this release. It is shown that the rate of ALA accumulation varies with the wave-length and fluence rate of the 1-min light pulse and can be predicted from the degree of protochlorophyll-(ide) photoconversion. There is a linear correlation between the rate of ALA accumulation and the degree of protochlorophyll(ide) (PChl)chlorophyll(ide) a (Chl a) photoconversion in etiolated seedlings. In seedlings pretreated with red light this correlation is non-linear and the rate increases more rapidly with increasing degrees of PChlChl a photoconversion. It is suggested that there may exist an interaction between P fr and PChlChl a photoconversion in controlling ALA accumulation.Abbreviations ALA 5-aminolaevulinate - Chl chlorophyll(ide) - PChl protochlorophyll(ide) - cp cotyledon pair - LA laevulinate  相似文献   

12.
R. Hampp  A. R. Wellburn 《Planta》1979,147(3):229-235
Mitochondria isolated from 7-day old darkgrown Avena sativa L. (var. Arnold) laminae given 5 min illumination of red light, followed by varying lengths of darkness up to 3 h, showed at least a twofold increase in the rates of both NADH-dependent oxygen consumption and respiratory chain phosphorylation over those of mitochondria isolated from unilluminated tissue. Similar organelles, isolated from tissue given either far-red or red followed by far-red pretreatment, exhibited rates of both functions of between 25% and 75% below those of the mitochondria from unilluminated tissue. The induction-reversion criteria for phytochrome control of respiration and oxidative phosphorylation were satisfied under all experimental conditions during the greening process.Treatment with continuous far-red light, acting presumably through the high irradiance reaction of phytochrome, served to disengage phytochrome activity from photosynthesis. The stimulation of oxidative phosphorylation still occurred under these conditions, slightly slower but much more prolonged in the absence of ATP from photophosphorylation.Abbreviations BSA bovine serum albumen - DAD diaminodurene - EDTA ethylene-diaminetetra-acetic acid - HEPES N-2-hydroxy-ethyl-piperazine-N-2-ethane-sulphonic acid - Pfr phytochrome in the active form  相似文献   

13.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

14.
The absorption maximum of the far-red absorbing form of phytochrome in the difference spectrum for phototransformation (Pfr max) was investigated in vivo and in in vitro pellets from dark grown Hordeum vulgare L. primary leaves. Exposure of pellets in Honda medium from tissue pre-irradiated with red light to far red light gave a Pfr max of 734 nm, a slightly longer wavelength than was seen in vivo (730 nm). After incubation as the red absorbing form of phytochrome (Pr) for 2 h at 0° C irradiation with red light showed that Pfr max had shifted to shorter wavelength (716 nm) in Honda medium. Further incubation as Pfr for 2 h at 0° C and irradiation with far red light showed that Pfr max had shifted to longer wavelength (726 nm). Similar shifts were also seen in other media, although the peak positions were different. Phytochrome remained pelletable throughout these experiments and Pfr max is compared to that of soluble phytochrome in similar media. The results are interpreted as indicating changes in molecular environment of the putative phytochrome membrane receptor site and that Pfr max can be used to probe the nature of this binding.Abbreviations D Dark - EDTA Ethylene diamine tetra-acetic acid - F far red light - MOPS N-morpholino-3-propane-sulphonic acid - P Phytochrome - Pr red absorbing form of P - Pfr far red absorbing form of P - Pfr max wavelength maximum of Pfr absorbance in a phototransformation difference spectrum - R red light  相似文献   

15.
Coaction of three factors controlling chlorophyll and anthocyanin synthesis   总被引:1,自引:0,他引:1  
Helga Kasemir  Hans Mohr 《Planta》1982,156(3):282-288
In a three-factor analysis the rate of chlorophyll a (Chl) accumulation in excised mustard cotyledons was studied as a function of kinetin, light (operating through phytochrome, P fr) and an excision factor. It was found that the three factors operate additively provided that the P fr level is high enough. When the P fr level is below approximately 1 per cent (<0.01) the effectiveness of the excision factor decreases while the effect of kinetin remains additive. The observed additivity is explained by a model where the three factors operate independently through a common intermediate (presumably 5-aminolevulinate) in the biosynthetic chain leading to Chl. With regard to the coaction of the excision factor and phytochrome it is concluded that the production of the excision factor requires the operation of phytochrome (even though saturated at a low P fr level) while the action of the excision factor is independent of phytochrome. This conclusion was confirmed by experiments in which the rate of light-mediated anthocyanin synthesis was measured in excised mustard cotyledons. The effect of excision in the case of anthocyanin formation differs kinetically from the effect of excision on Chl formation.Abbreviations Chl chlorophyll(ide) a - P fr far-red absorbing form of phytochrome - P fr/P tot ratio at photoequilibrium - RL red light - FR far-red light - GL green light - RG9 light long wavelength far-red light - WL white light  相似文献   

16.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

17.
We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 , phgpx2 , and phgpx3), were tested for their sensitivity to Al. The triple mutant, phgpx1 /2/3, was more sensitive to Al (55% reduction in growth at 300 M Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3 to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3 and phgpx1/2/3 mutants were sensitive to oxidative stress (exposure to H2O2 or diamide). Lipid peroxidation was also increased in the phgpx1/2/3 mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1 and gtt2), glutathione biosynthesis (gsh1 and gsh2), glutathione reductase (glr1) and a glutathione transporter (opt1) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2 mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 M Al. Intracellular oxidation levels in the ure2 mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H2O2) increase compared to BY4741; however, the ure2 mutant showed no change in lipid peroxidation compared to the control. The phgpx1/2/3 and ure2 mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.Communicated by D.Y. Thomas  相似文献   

18.
The effect of varying light regimes on in vitro rooting of microcuttings of two pear (Pyrus communis L.) cultivars was investigated. Cultures of the easy to-root Conference and the difficult-to-root Doyenne d'Hiver were incubated for 21 days with or without indole-3-butyric acid (IBA) in the medium in darkness or under continuous far-red (8 µmol m–2 s–1), blue, white or red (15 or 36 µmol m–2 s–1) light. Conference rooted without IBA when exposed to red, blue or white light while no rooting was observed under far-red light and in darkness. The high rooting efficiency under red and, by contrast, the inhibition under far-red light and darkness suggest the involvement of the phytochrome system in rhizogenesis. The addition of IBA to the culture medium enhanced root production under all light regimes in both cultivars. Red light, especially at the lower photon fluence rate, had a positive effect by increasing root extension (number × length of roots) and stimulating secondary root formation.Abbreviations IBA Indole-3-butyric acid - R red light - B blue light - FR far-red light - W white light - D darkness - Pfr active (far-red light absorbing) form of phytochrome - Ptot total phytochrome - BA benzyl-adenine  相似文献   

19.
The effect on the phytochrome system of light regimes establishing a range of photoequilibria was studied in two light grown dicotyledonous plants, both of which were treated with the herbicide SAN 9789 to prevent chlorophyll accumulation. In Sinapis alba L. cotyledons the results are comparable with phytochrome behaviour in etiolated mustard seedlings; the level of Pfr becomes independent of wave-length whereas the total phytochrome level is wave-length dependent. Contrasting properties are exhibited in Phaseolus aureus Roxb. leaves in which total phytochrome is unaffected by light quality; consequently the Pfr level is dependent on wavelength. Nevertheless, the amount of phytochrome in mung leaves increased after transfer to darkness suggesting that light still has a profound influence on the phytochrome system, even though light quality during the light period and prior to darkness does not.Abbreviations FR far-red light - WL white light - PAR photosynthetically active radiation - Pfr far-red light absorbing form of phytochrome - Pr red light absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr) - Pfr/Pfr+Pr - SAN 9789 4-chloro-5-(methylamino) 2(,, trifluoro-m tolyl)-3(2H)-pyridazinone  相似文献   

20.
K. Malhotra  H. Oelze-Karow  H. Mohr 《Planta》1982,154(4):361-370
We have performed a comprehensive study on the mechanism of regulation of carotenogenesis by light in the shoot of Sorghum vulgare. Our work shows that carotenoid accumulation is simultaneously controlled by phytochrome (Pfr) and by the availability of chlorophyll. Throughout plastidogenesis light dependent chlorophyll and carotenoid accumulation are interdependent processes: Accumulation of chlorophyll in natural light requires the presence of carotenoids; likewise, accumulation of considerable amount of carotenoids depends on the availability of chlorophyll. However, in both cases the efficiency of the biosynthetic pathway, the potential biosynthetic rates (capacities) are determined by phytochrome. A push and pull model of carotenogenesis advanced previously (Frosch and Mohr 1980, Planta 148, 279) to explain carotenogenesis in the mustard (Sinapis alba) seedling also applies to the monocotyledonous milo (Sorghum vulgare) seedling. Therefore, we suggest that the model applies to carotenogenesis in higher plants in general.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR High irradiance response (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - P red absorbing physiologically inactive form of phytochrome - Ptot total phytochrome - i.e. [Pr]+[Pfr] =[Pfr]+[Ptot], wavelength dependent photoequilibrium of the phytochrome system - RL red light - FR far-red light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号