首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bean common mosaic virus (BCMV) was isolated from the naturally infected bean plants collected from the Kafr El-Sheikh and El-Gharbia Governorates. BCMV induced sever mosaic, vein banding, malformation, leaf curling and stunting on bean plants cv. Giza 6. The isolated virus was propagated in bean plants cv. Giza 6. The identification of BCMV was carried out serologically by an indirect enzyme-linked immunosorbent assay using BCMV antiserum. Positive reaction indicated that the virus under study was related serologically to Potyvirus. The molecular biology techniques were used to identify and characterise the coat protein gene of BCMV. Oligonucleotide primers were designed for BCMV according to the published nucleotide sequences of BCMV and were successfully amplified with a DNA fragment (300 bp) from BCMV CP gene by RT-PCR. The total RNA was extracted from bean leaves and was reverse-transcribed and amplified using the oligonucleotide primer. The amplified product was analysed by gel electrophoresis. Also, Southern and dot blot hybridisations were used to establish the authenticity and specificity to the RT-PCR-amplified products of BCMV. The nucleotide sequences of the Egyptian isolate of BCMV/CP showed similarity with an isolate (BCMV-NY 15) which belongs to Puerto Rico.  相似文献   

2.
Gorissen  A.  Cotrufo  M.F. 《Plant and Soil》2000,224(1):75-84
Leaf and root tissue of Lolium perenne L., Agrostis capillaris L. and Festuca ovina L. grown under ambient (350 μl l-1 CO2) and elevated (700 μl l-1) CO2 in a continuously 14C-labelled atmosphere and at two soil N levels, were incubated at 14°C for 222 days. Decomposition of leaf and root tissue grown in the low N treatment was not affected by elevated [CO2], whereas decomposition in the high N treatment was significantly reduced by 7% after 222 days. Despite the increased C/N ratio (g g-1) of tissue cultivated at elevated [CO2] when compared with the corresponding ambient tissue, there was no significant correlation between initial C/N ratio and 14C respired. This finding suggests that the CO2-induced changes in decomposition rates do not occur via CO2-induced changes in C/N ratios of plant materials. We combined the decomposition data with data on 14C uptake and allocation for the same plants, and give evidence that elevated [CO2] has the potential to increase soil C stores in grassland via increasing C uptake and shifting C allocation towards the roots, with an inherent slower decomposition rate than the leaves. An overall increase of 15% in 14C remaining after 222 days was estimated for the combined tissues, i.e., the whole plants; the leaves made a much smaller contribution to the C remaining (+6%) than the roots (+26%). This shows the importance of clarifying the contribution of roots and leaves with respect to the question whether grassland soils act as a sink or source for atmospheric CO2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
A new allele, SC148, of thesulfurea locus inLycopersicon esculentum was detected in a line derived after repeated selfing of plants that had been regenerated from tissue culture. Like the originalsulf mutant, SC148 displayed two mutant phenotypes: green-yellow speckled plants in which thesulf vag allele is present and pure yellow plants homozygous for thesulf tpura allele. Although the mutant alleles are recessive to wild-type, an unpredictable number of variegated and pura plants appeared in F1 progenies that had been derived from crosses between SC148 and wild-type tomato plants. The presence of the wild-typesulf + allele in these variegated heterozygotes was demonstrated using a cytological marker that is linked tosulf. It is concluded that the mutantsulf allele of SC148, imposes its variegated expression state on the wild-typesulf + allele present insulf +/sulfvag heterozygotes. This behaviour, known as paramutation, has also been described for the originalsulf allele. The SC148 allele, however, seems to induce changes at an earlier stage in development. The analogy of this paramutagenic system to dominant position effect variegation inDrosophila is discussed.  相似文献   

4.
In the natural populations +Tüb, +Prov, and +Rov, similar Adh F allele frequencies occur (q F=0.11, 0.18, and 0.08, respectively). However, there is a discrepancy in that the Adh F allele in +Tüb is closely linked to the lethal factor 1(2)Stm, which reduces relative fitness of the F phenotype to zero. In spite of this, polymorphism is maintained also in +Tüb, because the heterozygotes are superior to the homozygous S type (relative fitness=0.88). Under laboratory culture conditions, in +Tüb the relative fitness of the S genotype further decreases to 0.6. After outcrossing the lethal factor, relative fitnesses for S, FS, and F become 0.6, 1, and 0.48, respectively, implying that fitness for S remains the same. Relative values for S, FS, and F in +Prov, not affected by the lethal factor, are calculated by the maximum average fitness method to be 1, 1.2, and 0.2 under the assumption that heterozygous FS are similarly superior to S as in the natural +Tüb population and all allele frequencies found are stable equilibrium values.  相似文献   

5.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

6.
Primary leaves of young plants of common bean (Phaseolus vulgaris cv. Carioca and Negro Huasteco) and cowpea (Vigna unguiculata Walp cv. Epace 10) were exposed to high irradiance (HI) of 2 000 μmol m−2 s−1 for 10, 20, and 30 min. The initial fluorescence (F0) was nearly constant in response to HI in each genotype except for Carioca. A distinct reduction of maximum fluorescence (Fm) was clearly observed in stressed genotypes of beans after 20 min followed by a slight recovery for the longer stress times. In common bean, the maximum quantum yield (Fv/Fm) was reduced slowly from 10 to 30 min of HI. In cowpea, only a slight reduction of Fv/Fm was observed at 20 min followed by recovery to normal values at 30 min. HI resulted in changes in the photochemical (qP) and non-photochemical (qN) quenching in both species, but to a different extent. In cowpea plants, more efficiency in the use of the absorbed energy under photoinhibitory conditions was related to increase in qP and decrease in qN. In addition, lipid peroxidation changed significantly in common bean genotypes with an evident increase after 20 min of HI. Hence the photosynthetic apparatus of cowpea was more tolerant to HI than that of common bean and the integrity of cowpea cell membranes was apparently maintained under HI.  相似文献   

7.
Abstract

The presence of latent infections was studied in five cowpeas varieties. Seeds of the varieties were planted and the seedlings inoculated with antigens from Cucumber mosaic virus (CMV) genus Cucumovirus, Bean common mosaic virus (BCMV) genus Potyvirus (Blackeye cowpea mosaic virus strain), Southern bean mosaic virus (SBMV) genus Sobemovirus and Cowpea mottle virus (CPMoV) genus Carmovirus seven days after planting. Seedlings expressing symptoms were rouged at two weeks after inoculation, while asymptomatic ones were subjected to serological indexing to detect the presence/absence of latent infection. Protein A-sandwich enzyme-linked immunosorbent assay (PAS ELISA) was employed for the serological detection of CMV, SBMV and CPMoV, while antigen-coated plate (ACP) ELISA was used to detect BCMV in the asymptomatic plants. Cowpea seedlings without virus symptoms but with positive serological reactions were considered as being latently infected. All of the inoculated TVu 1272 and SuVita-2 plants showed symptoms consistent with CMV and CPMoV infections, respectively. The rate of CMV latent infection was high in TVu 1179 (14.5%), low in SuVita-2 (1.3%) but not recorded in TVu 1272.  相似文献   

8.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   

9.
Summary Four soybean seed urease nulls (lacking both the activity and antigen of the embryo-specific urease) were intermated and the F1 and F2 seed examined for urease activity. Both generations were without urease activity, and the nulls were therefore considered noncomplementing. In crosses of each null line to cultivars homozygous for the allelic, codominantly inherited urease slow or fast isozyme, the F1 seed expressed the embryo-specific urease isozyme of the urease-expressing parent. A 3 1 segregation for presence and absence of urease was observed in progeny from F1 and heterozygous F2 plants. The F2 and F3 from fastXnull combinations revealed that urease-positive seed were all phenotypically urease fast, while the same seed from slowXnull combinations showed a segregation of one seed containing a fast urease, either exclusively or in a heterozygous state with the slow isozyme, for every 69 phenotypic slows. Data pooled from F2 plants which segregate for both the presence (Sun) and absence (Sun) of urease and for the fast (Eu1-b) or slow (Eu1-a) urease allele indicate that the null lesion (Sun) is linked to Eu1 by approximately one map unit. The evidence is consistent with two models: (1) sun is an allele at the embryo-specific urease isozyme locus (Eu1) and that a high degree of exchange (and/or conversion) within the locus results in a 1% recombination frequency between the null trait and urease allozyme; (2) sun is at a distinct locus which is separated by one map unit from the embryo-specific urease isozyme locus (Eu1) upon which it acts in the cis position. Polyadenylated embryo RNA from one of the null lines, PI 229324, exhibited no urease template activity in vitro. Thus, the lack of urease antigen is due to lack of accumulation of translatable urease mRNA. The availability of soybeans lacking seed urease should be extremely useful to breeders as a trait for linkage studies and to geneticists as a transformation marker.Portions of this work were funded by the Illinois and Missouri Agricultural Experiment Stations, the SOHIO-University of Illinois Center of Excellence in Crop Molecular Genetics and Genetic Engineering and by grants PCM-8219652 from the National Science Foundation and USDA/SEA-CRCR-1-1374 from the USDA Competitive Grants Office  相似文献   

10.
The aim of this study was to identify the molecular markers (SSR, RAPD and SCAR) associated with Mungbean yellow mosaic virus resistance in an interspecific cross between a mungbean variety, VRM (Gg) 1 X a ricebean variety, TNAU RED. The parental survey was carried out by using 118 markers (including 106 azuki bean primers, seven mungbean primers and five ricebean primers). This study revealed that 42 azuki bean markers (39.62%) and four mungbean markers (54.07%) showed parental polymorphism. These polymorphic markers were surveyed among the 187 F2 plants and the results showed distorted segregation or chromosomal elimination at all the marker loci (thus, deviating from the expected 1:2:1 segregation). None of the plants harboured the homozygous ricebean allele for the markers surveyed and all of them were skewed towards mungbean, VRM (Gg) 1, allele, except a few plants which were found to be heterozygous for few markers. Among the 42 azuki bean SSR markers surveyed, only 10 markers produced heterozygotic pattern in six F2 lines viz. 3, 121, 122, 123, 185 and 186. These markers were surveyed in the corresponding F3 individuals, which too skewed towards the mungbean allele. In this study, one species-specific SCAR marker was developed for ricebean by designing primers from the sequenced putatively species-specific RAPD bands. A single, distinct and brightly resolved band of 400?bp was found amplified only in the resistant parent, TNAU RED, and not in any other six species or in the resistant or the susceptible bulks of the mapping population clearly indicated the identification of SCAR marker specific to the ricebean.  相似文献   

11.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

12.
The paper presents data of investigation on the physico‐chemical and antigenic properties of capsid proteins of the Bean common mosaic virus isolated from Phaseolus plants in the Russian Far East (BCMV‐R) and from China (BCMV‐C). A method for isolation of the virus preparation was selected. The purified preparations of two isolates BCMV have been obtained. The presence of one polypeptide in structural proteins of virions was established and their molecular masses determined (BCMV‐R ‐ 31,6 kD; BCMV‐C ‐ 32,1 kD). Polyclonal antiserum was obtained with titre 1:12800 and the indirect and “sandwich"‐variants of ELISA were developed to detect this virus. The allied relationships were established with the bean yellow mosaic virus and with the type representative of the genus Potyvirus ‐ PVY. Based on the data of physico‐chemical and antigenic properties it was concluded that isolates BCMV‐R and BCMV‐C are two independent strains of this virus. The presence of strain‐, virus‐ and genusspecific epitopes of capsid proteine was revealed as a result of comparison of antigenic characteristics of the Russian Far Eastern and Chinese strains of BCMV. A high antigenic activity of capsid protein of the Russian Far Eastern strain was observed.  相似文献   

13.
Summary Two stable derivatives of the highly unstable niv-53::Tam1 allele of Antirrhinum majus were analysed. In both derivatives the Tam1 element is integrated at the same site and in the same orientation as in the parental niv-53::Tam1 allele. In both cases the Tam1 element was found to carry a 5 bp deletion (CACTA) in one of its termini. This explains the excision deficiency of these two alleles of Tam1, niv-53::Tam1-46 and niv-53::Tam1-49. Niv-44::Tam2, another stable nivea mutation, carries the 5 kb element Tam2, which is not a derivative of Tam1 but possesses identical terminal inverted repeats. When the stable lines 46 and 49 were corssed with line 44, suprisingly, a high number of the flowers in the F1 displayed a variegated phenotype. Sequence analysis of two germinal revertants isolated from the heterozygote niv-53::Tam1-46/niv-44::Tam2 shows excision of the Tam2 element. This indicates that Tam2 is a defective element, which can be complemented by an active Tam1 element. However, the variegated F1 phenotype observed is not inherited monofactorially. Variegation is seen only at particular times of development of the F1 plants. These phenomena seem to involve both the Tam1 and Tam2 transposable elements.  相似文献   

14.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

15.
Seedlings of spring barley, meadow fescue, and winter rape were fumigated with 180 μg kg−1 of ozone for 12 d, and effect of O3 on photosynthesis and cell membrane permeability of fumigated plants was determined. Electrolyte leakage and chlorophyll fluorescence were measured after 6, 9, and 12 d of fumigation, while net photosynthetic rate (P N) and stomatal conductance (g s) were measured 9 d after the start of ozone exposure. O3 treatment did not change membrane permeability in fescue and barley leaves, while in rape a significant decrease in ion leakage was noted within the whole experiment. O3 did not change the photochemical efficiency of photosystem 2 (PS2), i.e., Fv/Fm, and the initial fluorescence (F0). The values of half-rise time (t1/2) from F0 to maximal fluorescence (Fm) decreased in fescue and barley after 6 and 9 d of fumigation. P N decreased significantly in ozonated plants, in the three species. The greatest decrease in P N was observed in ozonated barley plants (17 % of the control). The ozone-induced decrease in P N was due to the closure of stomata. Rape was more resistant to ozone than fescue or barley. Apparently, the rape plants show a large adaptation to ozone and prevent loss of membrane integrity leading to ion leakage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Summary A cross between a 0% pseudo-self-compatible (PSC) plant (S3.3) and a 100% PSC plant (S1.1) yielded an F1 population which, when selfed, produced a high mean seed set which was not significantly different than that produced when the F1 was backcross pollinated by the 100% PSC parent. Backcross pollinating the F1 with the 0% PSC parent yielded no seed. No S3.3 plants were recovered in the F2 populations, indicating that pollen tubes containing the S3 allele were inhibited during pollen tube growth of the selfed F1 plants. Apparently stylar-conditioned PSC does not remove all discriminatory power from these petunia styles. Crossing the F1 (S1.3) with an self-incompatible (SI) plant (S2.2) produced plants which were used for computation of a standard linkage test. An approximate map distance of 28 units was found between the S specificity locus and the major gene(s) which influenced its expression. Other generalized PSC modifying genes apparantly were not linked with the S locus.Scientific Journal Series Paper Number 10,606 of the Minnesota Agricultural Experiment Station  相似文献   

17.
Gas exchange and fluorescence measurements of attached leaves of water stressed bean, sunflower and maize plants were carried out at two light intensities (250 mol quanta m-2s-1 and 850 mol quanta m-2s-1). Besides the restriction of transpiration and CO2 uptake, the dissipation of excess light energy was clearly reflected in the light and dark reactions of photosynthesis under stress conditions. Bean and maize plants preferentially use non-photochemical quenching for light energy dissipation. In sunflower plants, excess light energy gave rise to photochemical quenching. Autoradiography of leaves after photosynthesis in 14CO2 demonstrated the occurrence of leaf patchiness in sunflower and maize but not in bean. The contribution of CO2 recycling within the leaves to energy dissipation was investigated by studies in 2.5% oxygen to suppress photorespiration. The participation of different energy dissipating mechanisms to quanta comsumption on agriculturally relevant species is discussed.Abbreviations Fo minimal fluorescence - Fm maximal fluorescence - Fp peak fluorescence - g leaf conductance - PN net CO2 uptake - qN coefficient of non-photochemical quenching - qP coefficient of photochemical quenching  相似文献   

18.
Summary Chlorotic plants were segregated in F2 populations in varietal crosses of common rice. The genetic basis and distribution of the genes causing F2 chlorosis in native cultivars were studied to examine the role of the F2 chlorosis in varietal differentiation of rice. It was proven that this F2 chlorosis was controlled by a set of duplicate genes, hca-1 and hca-2. The hca-2 gene was widely distributed in native cultivars of the Japonica type, while many Indica types carried its dominant allele hca-2 +. Japanese cultivar J-147 carried hca-2. The hca-1 gene was frequently distributed in cultivars containing the Hwc-2 gene for F1 weakness. We concluded that F2 chlorosis does not cause or promote varietal differentiation in rice.  相似文献   

19.
In plants, the oxygen generated by photosynthesis can be excited to form reactive oxygen species (ROS) under excessive sunlight. Excess ROS including singlet oxygen (1O2) inhibit the growth, development and photosynthesis of plants. To isolate ROS-resistant crop plants, we used paraquat (PQ), a generator of O2 ·− as a source of screening and mutagen, and obtained two PQ-resistant lines in Pisum sativum, namely R3-1 and R3-2. Both lines showed greater resistance to PQ than their wild type (WT) siblings with respect to germination, root growth, and shoot growth. Biochemical analysis showed differences in these lines, in which ROS-scavenging enzymes undergo changes with a distinguishable increase in Mn-SOD. We further observed that the cytosolic catalases (CATs) in leaves in both lines were shifted in a native-PAGE analysis compared with that of the WT, indicating that the release of bound 1O2 was enhanced. Phenotypic analysis revealed distinguishable differences in leaf development, and in flowering time and position. In addition, R3-1 and R3-2 showed shorter individual internode lengths, dwarf plant height, and stronger branching compared with the WT. These results suggested that PQ-induced ROS-resistant Pisum have the potential pleiotropic effects on flowering time and stem branching, and that ROS including 1O2 plays not only important roles in plant growth and development as a signal transducer, but also appears as a strong inhibitor for crop yield. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Du XZ  Ge XH  Zhao ZG  Li ZY 《Plant cell reports》2008,27(2):261-271
The intertribal sexual hybrids between three Brassica napus (2n = 38) cultivars and Lesquerella fendleri (2n = 12) with the latter as pollen parent were obtained and characterized for their phenotypes and chromosomal and genomic constitutions. F1 plants and their progenies mainly resembled female B. napus parents, while certain characters of L. fendleri were expressed in some plants, such as longer flowering period, basal clustering stems and particularly the glutinous layer on seed coats related to drought tolerance. Twenty-seven F1 plants were cytologically classified into five types: type I (16 plants) had 2n = 38, type II (2) had 2n = 38–42, type III (3) had 2n = 31–38, type IV (5) had 2n = 25–31, and type V (1) had 2n = 19–22. Some hybrids and their progenies were mixoploids in nature with only 1–2 chromosomes or some chromosomal fragments of L. fendleri included in their cells. AFLP (Amplified fragments length polymorphism) analysis revealed that bands absent in B. napus, novel for two parents and specific for L. fendleri appeared in all F1 plants and their progenies. Some progenies had the modified fatty acid profiles with higher levels of linoleic, linolenic, eicosanoic and erucic acids than those of B. napus parents. The occurrence of these partial hybrids with phenotypes, genomic and fatty acid alterations resulted possibly from the chromosome elimination and doubling accompanied by the introgression of alien DNA segments and genomic reorganization. The progenies with some useful traits from L. fendleri should be new and valuable resource for rapeseed breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号