首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Transport of newly synthesized cholesterol and vesicular stomatitis virus G protein from the endoplasmic reticulum to the plasma membrane is interrupted by incubation at 15 degrees C. Under this condition the newly synthesized molecules accumulate in both the endoplasmic reticulum (ER) and a subcellular vesicle fraction of low density called the lipid-rich vesicle fraction. The material in the lipid-rich vesicle fraction appears to be a post-ER intermediate in the transport process to the plasma membrane (PM). Although both newly synthesized cholesterol and G protein accumulate in this intermediate compartment at 15 degrees C, suggesting cotransport, treatment with Brefeldin A does not affect cholesterol transport to the PM, whereas it strongly inhibits G protein transport. We conclude that cholesterol and G protein leave the ER in separate vesicles, the cholesterol containing vesicles bypass the Golgi apparatus and proceed to the PM, whereas G protein containing vesicles follow the well documented Golgi route to the cell surface.  相似文献   

2.
Rat liver synthesizes a glycoprotein with Mr of 80.000 (gp 80) which is partly inserted into the plasma membrane and partly secreted into the serum. The membrane-integrated and the secretory form of this glycoprotein have an identical peptide pattern, but different N-linked glycans. Whereas gp 80 from the serum is glycosylated with complex-type oligosaccharides, gp 80 from the plasma membrane has high mannose glycans. Phase separation with Triton X-114 showed that membrane-integrated gp 80 contains hydrophobic portions, whereas secretory gp 80 has hydrophilic properties. Intracellular transport and oligosaccharide processing of gp 80 were studied in vivo in the endoplasmic reticulum, the Golgi apparatus and plasma membranes of rat liver and in serum using pulse-chase labeling with L-[35S]methionine and immunoprecipitation. Peak labeling of gp 80 was reached in the endoplasmic reticulum 10 min after the pulse, in the Golgi apparatus 20 min later, and in the plasma membrane after 2 h; in the serum the specific radioactivity was steadily increasing during the experiment. Gp 80 of the endoplasmic reticulum was completely sensitive to endo-beta-N-glucosaminidase H (endo H), but simultaneously occurred in the Golgi apparatus in an endo H-sensitive and endo H-resistant form. The endo H-sensitive form was transported to the plasma membrane, the endo H-resistant species secreted into the serum. Conversion from the endo H-sensitive to the endo H-resistant form was completed within 10 min after transfer of gp 80 to the Golgi apparatus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Protein sorting upon exit from the endoplasmic reticulum   总被引:18,自引:0,他引:18  
Muñiz M  Morsomme P  Riezman H 《Cell》2001,104(2):313-320
It is currently thought that all secretory proteins travel together to the Golgi apparatus where they are sorted to different destinations. However, the specific requirements for transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi apparatus in yeast could be explained if protein sorting occurs earlier in the pathway. Using an in vitro assay that reconstitutes a single round of budding from the endoplasmic reticulum, we found that GPI-anchored proteins and other secretory proteins exit the endoplasmic reticulum in distinct vesicles. Therefore, GPI-anchored proteins are sorted from other proteins, in particular other plasma membrane proteins, at an early stage of the secretory pathway. These results have wide implications for the mechanism of protein exit from the endoplasmic reticulum.  相似文献   

4.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

5.
Enzyme induction of HeLa cell placental alkaline phosphatase with various agents such as prednisolone, sodium butyrate, hyperosmolality (NaCl), or combination of these inducers resulted in the appearance of enzyme activity in the rough endoplasmic reticulum, nuclear envelope, Golgi apparatus, and plasma membrane. In the Golgi apparatus, intense reaction product deposits tended to be concentrated on its trans side, with small vesicles and granules also being positively stained. Inhibition of protein synthesis with cycloheximide was followed by the disappearance of enzyme activity from these cytoplasmic organelles but not from the plasma membrane. Treatment with monensin, a secretory protein transport inhibitor, uniformly increased activity in the rough endoplasmic reticulum while causing marked dilatation of the intensely positive Golgi cisternae. These results suggest that intracellular alkaline phosphatase is newly synthesized in the endoplasmic reticulum and then passes en route through the Golgi apparatus to the plasma membrane. Accordingly, the present system could represent the biosynthesis, transport, and incorporation of the model cell surface enzyme protein to add to the vesicular stomatitus virus glyco-1 (VSV-G) protein and acetylcholine receptor model systems for studying the dynamics of cell surface protein genesis, transport, and membrane integration.  相似文献   

6.
《The Journal of cell biology》1985,101(5):1733-1740
The Golgi apparatus mediates intracellular transport of not only secretory and lysosomal proteins but also membrane proteins. As a typical marker membrane protein for endoplasmic reticulum (ER) of rat hepatocytes, we have selected phenobarbital (PB)-inducible cytochrome P- 450 (P-450[PB]) and investigated whether P-450(PB) is transported to the Golgi apparatus or not by combining biochemical and quantitative ferritin immunoelectron microscopic techniques. We found that P-450(PB) was not detectable on the membrane of Golgi cisternae either when P-450 was maximally induced by phenobarbital treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. The P-450 detected biochemically in the Golgi subcellular fraction can be explained by the contamination of the microsomal vesicles derived from fragmented ER membranes to the Golgi fraction. We conclude that when the transfer vesicles are formed by budding on the transitional elements of ER, P-450 is completely excluded from such regions and is not transported to the Golgi apparatus, and only the membrane proteins destined for the Golgi apparatus, plasma membranes, or lysosomes are selectively collected and transported.  相似文献   

7.
J Saraste  K Hedman 《The EMBO journal》1983,2(11):2001-2006
The route of transport of Semliki Forest virus (SFV) membrane glycoproteins to the plasma membrane was studied using immunoperoxidase electron microscopy. SFV glycoproteins were localized in cultured BHK-21 fibroblasts infected with a temperature-sensitive mutant ts-1 of SFV, which shows a temperature-dependent, reversible defect in the transport of membrane glycoproteins to the cell surface. At 39 degrees C (restrictive temperature) the viral proteins were retained in the endoplasmic reticulum and the nuclear membrane. After shift of the infected cultures to 28 degrees C (permissive temperature) the proteins were synchronously transported to the Golgi complex. In the Golgi complex the labeled proteins were first (at 2.5 min) detected in large Golgi-associated vacuoles (GAV). Subsequently, i.e., at 5-30 min, the viral glycoproteins appeared in the cisternal stack: at 5 min the label was found in one or two of the proximal cisternae whereas at 15 or 30 min also the more distal cisternae were partially or uniformly labeled. At all time points examined after the temperature-shift, peroxidase label was found in 50 nm vesicles which were frequently coated. At 30 min, in addition to the 50 nm vesicles, larger 80 nm vesicles, which often had a cytoplasmic coat were labeled in the Golgi region. These results identify two major size classes of both coated and smooth vesicles which appear to function in the transport of the viral membrane proteins from the endoplasmic reticulum via distinct GAV and the stacked Golgi cisternae to the plasma membrane.  相似文献   

8.
Suga K  Hattori H  Saito A  Akagawa K 《FEBS letters》2005,579(20):4226-4234
It has been suggested that syntaxin 5 (Syx5) participates in vesicular transport. We examined the effects of Syx5 down-regulation on the morphology of the Golgi apparatus and the transport of vesicles in mammalian cells. Knockdown of the Syx5 gene resulted in Golgi fragmentation without changing the level of endoplasmic reticulum (ER)-resident proteins, other Golgi-SNAREs (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors), and coatmer proteins. Strikingly, a major decrease in Syx5 expression barely affected the anterograde transport of vesicular stomatitis virus G (VSVG) protein to the plasma membrane. These results suggest that Syx5 is required for the maintenance of the Golgi structures but may not play a major role in the transport of vesicles carrying VSVG between the ER and the Golgi compartment.  相似文献   

9.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

10.
Cell-surface proteins are transported through the endoplasmic reticulum and Golgi apparatus en route to the plasma membrane. Previously, we have identified three point mutations in the insulin receptor gene that impair transport of the mutant receptors to the cell surface: Asn15----Lys, His209----Arg, and Phe382----Val. Furthermore, these mutations impair post-translational processing steps that normally occur as the receptors are transported through the endoplasmic reticulum and Golgi apparatus. In this study, we have demonstrated that the unprocessed Arg209 and Val382 mutant proreceptors are bound to the immunoglobulin heavy chain-binding protein (BiP) in the endoplasmic reticulum. This was demonstrated by the fact that monoclonal anti-BiP antibody coimmunoprecipitated the mutant proreceptors. Moreover, when ATP was added to the immunoprecipitates, the mutant proreceptors were released from BiP. In contrast, neither the normal human insulin receptor nor the Lys15 mutant proreceptor was coimmunoprecipitated by anti-BiP antibody. It seems likely that the Lys15 receptor also binds BiP, but that the affinity was too low to resist dissociation during the stringent washing of the immunoprecipitate. In conclusion, these observation are consistent with the hypothesis that binding to BiP explains the impaired transport of mutant receptors through the endoplasmic reticulum and Golgi apparatus to the plasma membrane.  相似文献   

11.
《The Journal of cell biology》1984,99(3):1101-1109
We studied the effects of changes in microtubule assembly status upon the intracellular transport of an integral membrane protein from the rough endoplasmic reticulum to the plasma membrane. The protein was the G glycoprotein of vesicular stomatitis virus in cells infected with the Orsay-45 temperature-sensitive mutant of the virus; the synchronous intracellular transport of the G protein could be initiated by a temperature shift-down protocol. The intracellular and surface- expressed G protein were separately detected and localized in the same cells at different times after the temperature shift, by double- immunofluorescence microscopic measurements, and the extent of sialylation of the G protein at different times was quantitated by immunoprecipitation and SDS PAGE of [35S]methionine-labeled cell extracts. Neither complete disassembly of the cytoplasmic microtubules by nocodazole treatment, nor the radical reorganization of microtubules upon taxol treatment, led to any perceptible changes in the rate or extent of G protein sialylation, nor to any marked changes in the rate or extent of surface appearance of the G protein. However, whereas in control cells the surface expression of G was polarized, at membrane regions in juxtaposition to the perinuclear compact Golgi apparatus, in cells with disassembled microtubules the surface expression of the G protein was uniform, corresponding to the intracellular dispersal of the elements of the Golgi apparatus. The mechanisms of transfer of integral proteins from the rough endoplasmic reticulum to the Golgi apparatus, and from the Golgi apparatus to the plasma membrane, are discussed in the light of these observations, and compared with earlier studies of the intracellular transport of secretory proteins.  相似文献   

12.
Immunoelectron microscopy and stereology were used to identify and quantitate Golgi fragments in metaphase HeLa cells and to study Golgi reassembly during telophase. On ultrathin frozen sections of metaphase cells, labeling for the Golgi marker protein, galactosyltransferase, was found over multivesicular Golgi clusters and free vesicles that were found mainly in the mitotic spindle region. The density of Golgi cluster membrane varied from cell to cell and was inversely related to the density of free vesicles in the spindle. There were thousands of free Golgi vesicles and they comprised a significant proportion of the total Golgi membrane. During telophase, the distribution of galactosyltransferase labeling shifted from free Golgi vesicles towards Golgi clusters and the population of free vesicles was depleted. The number of clusters was no more than in metaphase cells so the observed fourfold increase in membrane surface meant that individual clusters had increased in size. More than half of these had cisterna(e) and were located next to "buds" on the endoplasmic reticulum. Early in G1 the number of clusters dropped as they congregated in the juxtanuclear region and fused. These results show that fragmentation of the Golgi apparatus yields Golgi clusters and free vesicles and reassembly from these fragments is at least a two-step process: (a) growth of a limited number of dispersed clusters by accretion and fusion of vesicles to form cisternal clusters next to membranous "buds" on the endoplasmic reticulum; (b) congregation and fusion to form the interphase Golgi stack in the juxtanuclear region.  相似文献   

13.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

14.
Transfer of phosphatidylinositol (PI) between membranes was reconstituted in a cell-free system using membrane fractions isolated from dark-grown soybean (Glycine max [L.] Merr.). Donor membrane vesicles contained [3H]myo-inositol-labeled PI. A fraction enriched in endoplasmic reticulum was a more efficient donor than its parent microsomal membrane fraction. As acceptor, cytoplasmic side-out plasma membrane vesicles were more efficient than cytoplasmic side-in plasma membrane vesicles. Endoplasmic reticulum was also an efficient acceptor, suggesting that transfer occurred to cytoplasmic membrane leaflets. PI transfer was time and temperature dependent but did not require cytosolic proteins, ATP, GTP, cytosol, and acyl-coenzyme A. These results suggest that neither lipid transfer proteins nor transition vesicles, similar to those involved in vesicle trafficking from endoplasmic reticulum to the Golgi apparatus, were involved. In the presence of Mg2+ and ATP, endoplasmic reticulum PI was not metabolized, whereas PI transferred to the plasma membrane was metabolized into phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate. To summarize, the cell-free transfer of endoplasmic reticulum-derived PI was distinct from, for example, vesicle transport from endoplasmic reticulum to Golgi apparatus, not only in its regulation but also in its acceptor unspecificity.  相似文献   

15.
The fine structural localization of albumin in rat liver parenchymal cells was determined by an improved immunocytochemical method and serial sectioning. Albumin in the secretory apparatus of the parenchymal cells was present in segments of the rough endoplasmic reticulum, interrupted with negative segments, in transport vesicles, Golgi saccules, finely anastomosed tubules and vesicles on the trans side of the Golgi complex, and in secretion granules. Horizontally sectioned Golgi saccules contained lipoprotein particles on one side and albumin on the other side. After transport, the vesicles that contained albumin fused with the so-called rigid lamellae on the trans-side of the Golgi complex. Ultrathin serial sections revealed no true structural continuity between the endoplasmic reticulum and the cis-aspect of the Golgi complex. We concluded that secretory proteins are transported from the endoplasmic reticulum to the Golgi complex by transport vesicles that bud from the endoplasmic reticulum and fuse with the Golgi saccules. These vesicles fuse regularly with the Golgi saccules on the cis-side and occasionally with tubular elements on the trans-aspect that may belong to the so-called GERL.  相似文献   

16.
Poliovirus RNA replication occurs on the surface of membranous vesicles that proliferate throughout the cytoplasm of the infected cell. Since at least some of these vesicles are thought to originate within the secretory pathway of the host cell, we examined the effect of poliovirus infection on protein transport through the secretory pathway. We found that transport of both plasma membrane and secretory proteins was inhibited by poliovirus infection early in the infectious cycle. Transport inhibition did not require viral RNA replication or the inhibition of host cell translation by poliovirus. The viral proteins 2B and 3A were each sufficient to inhibit transport in the absence of viral infection. The intracellular localization of a secreted protein in the presence of 3A with the endoplasmic reticulum suggested that 3A directly blocks transport from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

17.
Rice (Oryza sativa) glutelins are synthesized on the endoplasmic reticulum as larger precursors, which are then transported via the Golgi to the protein storage vacuole (PSV), where they are processed into acidic and basic subunits. Three independent glutelin precursor mutant4 (glup4) rice lines, which accumulated elevated levels of proglutelin over the wild type, were identified as loss-of-function mutants of Rab5a, the small GTPase involved in vesicular membrane transport. In addition to the plasma membrane, Rab5a colocalizes with glutelins on the Golgi apparatus, Golgi-derived dense vesicles, and the PSV, suggesting that Rab5a participates in the transport of the proglutelin from the Golgi to the PSV. This spatial distribution pattern was dramatically altered in the glup4 mutants. Numerous smaller protein bodies containing glutelin and α-globulin were evident, and the proteins were secreted extracellularly. Moreover, all three independent glup4 allelic lines displayed the novel appearance of a large dilated, structurally complex paramural body containing proglutelins, α-globulins, membrane biomarkers for the Golgi apparatus, prevacuolar compartment, PSV, and the endoplasmic reticulum luminal chaperones BiP and protein disulfide isomerase as well as β-glucan. These results indicate that the formation of the paramural bodies in glup4 endosperm was due to a significant disruption of endocytosis and membrane vesicular transport by Rab5a loss of function. Overall, Rab5a is required not only for the intracellular transport of proglutelins from the Golgi to the PSV in rice endosperm but also in the maintenance of the general structural organization of the endomembrane system in developing rice seeds.  相似文献   

18.
L Orci  B S Glick  J E Rothman 《Cell》1986,46(2):171-184
Isolated Golgi membranes incubated in the presence of ATP and a cytosolic protein fraction form a population of coated buds or vesicles from the Golgi cisternae. The coats do not have the characteristic hexagonal-pentagonal basketwork of clathrin, and do not react with anti-clathrin polyclonal antibody. The conditions that produce these apparently nonclathrin-coated buds also reconstitute protein transport between compartments of the Golgi stack. The membrane of the buds contains the glycoprotein in transit through these Golgi stacks (VSV-encoded G protein). This suggests that protein transport through the Golgi stack is mediated by a new type of coated vesicle that does not contain clathrin. The concentration of G protein in the coated buds reflects the local concentration of G protein in the cisternae, raising the possibility that the Golgi coated vesicles may be "bulk" membrane carriers.  相似文献   

19.
Coated vesicles were isolated from rat liver in about 80% fraction purity as determined from electron microscopy and analyses of marker enzymes and compared with Golgi apparatus and other membrane fractions isolated in parallel. The fractions were enriched in NADH-monodehydroascorbate reductase, ascorbate oxidase and ascorbic acid. The NADH-monodehydroascorbate reductase and ascorbate oxidase of the Golgi apparatus and coated vesicles differed from that of the endoplasmic reticulum in being inhibited by the sodium selective ionophore, monensin, at physiological concentrations while these activities were stimulated by ethylenediaminetetraacetic acid in coated vesicles but not in Golgi apparatus. Activities of both coated vesicles and Golgi apparatus fractions depleted in the coat protein, clathrin, were activated by the addition of clathrin-rich supernatant fractions. The results are discussed in the context of monodehydroascorbate as an acceptor for electron transport-mediated transfer of electrons from NADH by coated vesicles as part of a possible mechanism to drive membrane translocations or to acidify the interiors of vesicles.  相似文献   

20.
Phosphoproteins and protein kinases of the Golgi apparatus membrane   总被引:5,自引:0,他引:5  
Incubation of a highly purified fraction derived from rat liver Golgi apparatus with [gamma-32P]ATP results in phosphorylation of several endogenous phosphoproteins. One phosphoprotein with an apparent Mr of 48,300 is radiolabeled to an apparent extent at least 5-fold higher than any other phosphoprotein as part of either the Golgi apparatus or highly purified rat liver fractions derived from the rough endoplasmic reticulum, mitochondria, plasma membrane, coated vesicles, cytosol, and total homogenate. Approximately 70% of the 48.3-kDa phosphoprotein appears to be a specific extrinsic Golgi membrane protein with the phosphorylated amino acid being threonine. The protein kinase which phosphorylates the 48.3-kDa protein is an intrinsic Golgi membrane protein and is dependent on Mg2+, independent of Ca2+, calmodulin, and cAMP, and is inhibited by N-ethylmaleimide. Preliminary evidence suggests that there are also intrinsic membrane protein kinases in the Golgi apparatus which are dependent on Ca2+ and cAMP. The physiological role of the above phosphoproteins and protein kinases is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号