首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Amphibious robots are very attractive for their broad applications in resource exploration, disaster rescue, and recon- naissance. However, it is very challenging to develop the robots for their complex, amphibious working environments. In the complex amphibious environment, amphibious robots should possess multi-capabilities to walk on rough ground, maneuver underwater, and pass through transitional zones such as sandy and muddy terrain. These capabilities require a high-performance propulsion mechanism for the robots. To tackle a complex task, a novel amphibious robot (AmphiHex-I) with,transformable fin-leg composite propulsion mechanisms is developed. With the fin-leg composite propulsions, AmphiHex-I can walk on rough and soft substrates and swim in water with many maneuvers. This paper presents the structural design of the transformable fin-leg propulsion mechanism and its driving module. A hybrid model is used to explore the dynamics between the trans- formable legs and transitional environment such as granular medium. The locomotion performances of legs with various ellip- tical shapes are analyzed, which is verified by the coincidence between the model predictions and the simulation results. Further, an orthogonal experiment is conducted to study the locomotion performance of a two-legged platform walking with an asyn- chronous gait in the sandy and muddy terrain. Finally, initial experiments of AmphiHex-I walking on various lands and swimming in water are implemented. These results verify that the transformable fin-leg mechanisms enable the amphibious robot to pass through a complex, amphibious working environment.  相似文献   

2.
With the development of intelligent bionic robots and the improvement of military application,a single robot cannot meet the requirements of the tasks of the current era.The more complex tasks require not only that the robot be able to pass through the field barriers and the amphibious environment,but also that the robot be able to collaborate in a multi-robot system.Consequently,research on the multi-robot control system of spherical amphibious robots is very important.Pres-ently,the main research on amphibious robots is to improve the functions of a single robot,in the absence of the study of the multi-robot control system.Existing systems primarily use a centralized control methodology.Although the transfer of central node can be achieved,there is still a problem of Byzantine fault tolerance in military applications,that is,when the amphibious multi-robot system is invaded by the enemy.The central node may not only fail to accomplish the task,but also lose control of other robots,with severe consequences.To solve the above problems,this paper proposed a decentralized method of spherical amphibious multi-robot control system based on blockchain technology.First,the point-to-point informa-tion network based on long range radio technology of low power wide area network was set up,we designed the blockchain system for embedded application environment and the decentralized hardware and software architecture of multi-robot control system.On this basis,the consensus plugin,smart contract and decentralized multi-robot control algorithm were designed to achieve decentralization.The experimental results of consensus of spherical amphibious multi-robot showed the effectiveness of the decentralization.  相似文献   

3.
Robots and robotics technologies are expected to provide new tools for inspection and manipulation, especially in extreme environments that are dangerous for human beings to access directly, such as underwater environments, volcanic areas, or nuclear power plants. Robots designed for such extreme environments should be sufficiently robust and strong to cope with disturbance and breakdowns. We focus on the movement of animals to realize robust robot systems. One approach is to mimic the nervous systems of animals. The central pattern generator of a nervous system has been shown to control motion patterns, such as walking, respiration and flapping. In this paper, a robot motion control system using a central pattern generator is proposed and applied to an amphibious multi-link mobile robot.  相似文献   

4.
Four flippers or two? Tetrapodal swimming with an aquatic robot   总被引:1,自引:0,他引:1  
To understand how to modulate the behavior of underwater swimmers propelled by multiple appendages, we conducted surge maneuver experiments on our biologically-inspired robot, Madeleine. Robot Madeleine is a self-contained, self-propelled underwater vehicle with onboard processor, sensors and power supply. Madeleine's four flippers, oscillating in pitch, can be independently controlled, allowing us to test the impact of flipper phase on performance. We tested eight gaits, four four-flippered and four two-flippered. Gaits were selected to vary the phase, at either 0 or pi rad, between flippers on one side, producing a fore-aft interaction, or flippers on opposite sides, producing a port-starboard interaction. During rapid starting, top-speed cruising, and powered stopping, the power draw, linear acceleration and position of Madeleine were measured. Four-flippered gaits produced higher peak start accelerations than two, but did so with added power draw. During cruising, peak speeds did not vary by flipper number, but power consumption was double in four flippers compared to that of two flippers. Cost of transport (J N(-1) m(-1)) was lower for two-flippered gaits and compares favorably with that of aquatic tetrapods. Two four-flippered gaits produce the highest surge scope, a measure of the difference in peak forward and reverse acceleration. Thus four flippers produce superior surge behavior but do so at high cost; two flippers serve well for lost-cost cruising.  相似文献   

5.
Underwater robot is a new research field which is emerging quickly in recent years.Previous researches in this field focuson Remotely Operated Vehicles(ROVs),Autonomous Underwater Vehicles(AUVs),underwater manipulators,etc.Fish robot,which is a new type of underwater biomimetic robot,has attracted great attention because of its silence in moving and energyefficiency compared to conventional propeller-oriented propulsive mechanism.However,most of researches on fish robots have been carried out via empirical or experimental approaches,not based ondynamic optimality.In this paper,we proposed an analytical optimization approach which can guarantee the maximum propulsivevelocity of fish robot in the given parametric conditions.First,a dynamic model of 3-joint(4 links)carangiform fishrobot is derived,using which the influences of parameters of input torque functions,such as amplitude,frequency and phasedifference,on its velocity are investigated by simulation.Second,the maximum velocity of the fish robot is optimized bycombining Genetic Algorithm(GA)and Hill Climbing Algorithm(HCA).GA is used to generate the initial optimal parametersof the input functions of the system.Then,the parameters are optimized again by HCA to ensure that the final set of parametersis the"near"global optimization.Finally,both simulations and primitive experiments are carried out to prove the feasibility ofthe proposed method.  相似文献   

6.
Development of a Bionic Hexapod Robot for Walking on Unstructured Terrain   总被引:1,自引:0,他引:1  
This paper reports the design methodology and control strategy in the development of a novel hexapod robot HITCR-II that is suitable for walking on unstructured terrain. First, the entire sensor system is designed to equip the robot with the perception of external environment and its internal states. The structure parameters are optimized for improving the dexterity of the robot. Second, a foot-force distribution model and a compensation model are built to achieve posture control. The two models are capable of effectively improving the stability of hexapod walking on unstructured terrain. Finally, the Posture Control strategy based on Force Distribution and Compensation (PCFDC) is applied to the HITCR-II hexapod robot. The experimental results show that the robot can effectively restrain the vibration of trunk and keep stable while walking and crossing over the un- structured terrains.  相似文献   

7.
Developing efficient walking gaits for quadruped robots has intrigued investigators for years. Trot gait, as a fast locomotion gait, has been widely used in robot control. This paper follows the idea of the six determinants of gait and designs a trot gait for a parallel-leg quadruped robot, Baby Elephant. The walking period and step length are set as constants to maintain a relatively fast speed while changing different foot trajectories to test walking quality. Experiments show that kicking leg back improves body stability. Then, a steady and smooth trot gait is designed. Furthermore, inspired by Central Pattern Generators (CPG), a series CPG model is proposed to achieve robust and dynamic trot gait. It is generally believed that CPG is capable of producing rhythmic movements, such as swimming, walking, and flying, even when isolated from brain and sensory inputs. The proposed CPG model, inspired by the series concept, can automatically learn the previous well-designed trot gait and reproduce it, and has the ability to change its walking frequency online as well. Experiments are done in real world to verify this method.  相似文献   

8.
This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.  相似文献   

9.
Auditory sensitivity in pinnipeds is influenced by the need to balance efficient sound detection in two vastly different physical environments. Previous comparisons between aerial and underwater hearing capabilities have considered media-dependent differences relative to auditory anatomy, acoustic communication, ecology, and amphibious life history. New data for several species, including recently published audiograms and previously unreported measurements obtained in quiet conditions, necessitate a re-evaluation of amphibious hearing in pinnipeds. Several findings related to underwater hearing are consistent with earlier assessments, including an expanded frequency range of best hearing in true seals that spans at least six octaves. The most notable new results indicate markedly better aerial sensitivity in two seals (Phoca vitulina and Mirounga angustirostris) and one sea lion (Zalophus californianus), likely attributable to improved ambient noise control in test enclosures. An updated comparative analysis alters conventional views and demonstrates that these amphibious pinnipeds have not necessarily sacrificed aerial hearing capabilities in favor of enhanced underwater sound reception. Despite possessing underwater hearing that is nearly as sensitive as fully aquatic cetaceans and sirenians, many seals and sea lions have retained acute aerial hearing capabilities rivaling those of terrestrial carnivores.  相似文献   

10.
In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.Theseongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations,scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments.However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency andmaneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrustforces which make the control of the position and motion difficult.On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to followtrajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle,and also have a noiseless propulsion.The fish’s locomotion mechanism is mainly controlled by its caudal fin and paired pectoralfins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highlyefficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism.There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in thispaper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of pairedpectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlightedthrough in-water experiment of a robotic fish.  相似文献   

11.
In this paper, we present a new concept of the mechanical design of a humanoid robot. The goal is to build a humanoid robot utilizing a new structure which is more suitable for human-like walking with the characteristics of the knee stretch, heel-contact, and toe-off. Inspired by human skeleton, we made an anthropomorphic pelvis for the humanoid robot. In comparison with conventional humanoid robots, with such the anthropomorphic pelvis, our robot is capable of adjusting the center of gravity of the upper body by the motion of pelvic tilt, thus reducing the required torque at the ankle joint and the velocity variations in human-like walking. With more precise analysis of the foot mechanism, the fixed-length inverted pendulum can be used to describe the dynamics of biped walking, thus preventing redundant works and power consumption in length variable inverted pendulum system. As the result of the new structure we propose, a humanoid robot is able to walk with human-like gait.  相似文献   

12.
We report the development of turning behavior on a child-size bipedal robot that addresses two common scenarios: turning in place and simultaneous walking and turning. About turning in place, three strategies are investigated and compared, including body-first, leg-first, and body/leg-simultaneous. These three strategies are used for three actions, respectively: when walking follows turning immediately, when space behind the robot is very tight, and when a large turning angle is desired. Concerning simultaneous walking and turning, the linear inverted pendulum is used as the motion model in the single-leg support phase, and the polynomial-based trajectory is used as the motion model in the double-leg support phase and for smooth motion connectivity to motions in a priori and a posteriori single-leg support phases. Compared to the trajectory generation of ordinary walking, that of simultaneous walking and turning introduces only two extra parameters: one for determining new heading direction and the other for smoothing the Center of Mass (COM) trajectory. The trajectory design methodology is validated in both simulation and experimental environments, and successful robot behavior confirms the effectiveness of the strategy.  相似文献   

13.
The research field of legged robots has always relied on the bionic robotic research,especially in locomotion regulating approaches,such as foot trajectory planning,body stability regulating and energy efficiency prompting.Minimizing energy consumption and keeping the stability of body are considered as two main characteristics of human walking.This work devotes to develop an energy-efficient gait control method for electrical quadruped robots with the inspiration of human walking pattern.Based on the mechanical power distribution trend,an efficient humanoid power redistribution approach is established for the electrical quadruped robot.Through studying the walking behavior acted by mankind,such as the foot trajectory and change of mechanical power,we believe that the proposed controller which includes the bionic foot movement trajectory and humanoid power redistribution method can be implemented on the electrical quadruped robot prototype.The stability and energy efficiency of the proposed controller are tested by the simulation and the single-leg prototype experi-ment.The results verify that the humanoid power planning approach can improve the energy efficiency of the electrical quadruped robots.  相似文献   

14.
In research on small mobile robots and biomimetic robots,locomotion ability remains a major issue despite many advances in technology.However,evolution has led to there being many real animals capable of excellent locomotion.This paper presents a "parasitic robot system" whereby locomotion abilities of an animal are applied to a robot task.We chose a turtle as our first host animal and designed a parasitic robot that can perform "operant conditioning".The parasitic robot,which is attached to the turtle,can induce object-tracking behavior of the turtle toward a Light Emitting Diode (LED) and positively reinforce the behavior through repeated stimulus-response interaction.After training sessions over five weeks,the robot could successfully control the direction of movement of the trained turtles in the waypoint navigation task.This hybrid animal-robot interaction system could provide an alternative solution to some of the limitations of conventional mobile robot systems in various fields,and could also act as a useful interaction system for the behavioral sciences.  相似文献   

15.
The concept of Intelligent Mechanical Design (IMD) is presented to show how a mechanical structure can be designed to affect robot controllability, simplification and task performance. Exploring this concept produces landmarks in the territory of mechanical robot design in the form of seven design principles. The design principles, which we call the Mecha-Telligence Principles (MTP), provide guidance on how to design mechanics for autonomous mobile robots. These principles guide us to ask the right questions when investigating issues concerning self-controllable, reliable, feasible, and compatible mechanics for autonomous mobile robots. To show how MTP can be applied in the design process we propose a novel methodology, named as Mecha-Telligence Methodology (MTM). Mechanical design by the proposed methodology is based on preference classification of the robot specification described by interaction of the robot with its environment and the physical parameters of the robot mechatronics. After defining new terms, we investigate the feasibility of the proposed methodology to the mechanical design of an autonomous mobile sewer inspection robot. In this industrial project we show how a passive-active intelligent moving mechanism can be designed using the MTM and employed in the field.  相似文献   

16.
This paper presents the development of a mesoscale self-contained quadruped mobile robot that employs two pieces ofpiezocomposite actuators for the bounding locomotion.The design of the robot leg is inspired by legged insects and animals,and the biomimetic concept is implemented in the robot in a simplified form,such that each leg of the robot has only one degreeof freedom.The lack of degree of freedom is compensated by a slope of the robot frame relative to the horizontal plane.For theimplementation of the self-contained mobile robot,a small power supply circuit is designed and installed on the robot.Experimentalresults show that the robot can locomote at about 50 mm·s-1with the circuit on board,which can be considered as asignificant step toward the goal of building an autonomous legged robot actuated by piezoelectric actuators.  相似文献   

17.
Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.  相似文献   

18.
Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.  相似文献   

19.
Control of a Quadruped Robot with Bionic Springy Legs in Trotting Gait   总被引:1,自引:0,他引:1  
Legged robots have better performance on discontinuous terrain than that of wheeled robots. However, the dynamic trotting and balance control of a quadruped robot is still a challenging problem, especially when the robot has multi-joint legs. This paper presents a three-dimensional model of a quadruped robot which has 6 Degrees of Freedom (DOF) on torso and 5 DOF on each leg. On the basis of the Spring-Loaded Inverted Pendulum (SLIP) model, body control algorithm is discussed in the first place to figure out how legs work in 3D trotting. Then, motivated by the principle of joint function separation and introducing certain biological characteristics, two joint coordination approaches are developed to produce the trot and provide balance. The robot reaches the highest speed of 2.0 m.s-1, and keeps balance under 250 Kg.m.s-1 lateral disturbance in the simulations. The effectiveness of these approaches is also verified on a prototype robot which runs to 0.83 m.s-1 on the treadmill, The simulations and experiments show that legged robots have good biological properties, such as the ground reaction force, and spring-like leg behavior.  相似文献   

20.
MOTIVATION: In contrast with conventional PCR using a pair of specific primers, some applications utilize a single unique primer in combination with a common primer, thereby relying solely on the former for specificity. These applications include rapid amplification of cDNA ends (RACE), adaptor-tagged competitive PCR (ATAC-PCR), PCR-mediated genome walking and so forth. Since the primers designed by conventional methods often fail to work in these applications, an improved strategy is required, particularly, for a large-scale analysis. RESULTS: Based on the structure of 'off-target' products in the ATAC-PCR, we reasoned that the practical determinant of the specificity of primers may not be the uniqueness of entire sequence but that of the shortest 3'-end subsequence that exceeds a threshold of duplex stability. We termed such a subsequence as a 'specificity-determining subsequence' (SDSS) and developed a simple algorithm to predict the performance of the primer: the algorithm identifies the SDSS of each primer and examines its uniqueness in the target genome. The primers designed using this algorithm worked much better than those designed using a conventional method in both ATAC-PCR and 5'-RACE experiments. Thus, the algorithm will be generally useful for improving various PCR-based applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号