首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fire is a common form of recurrent disturbance in many ecosystems, but ecological theory has a poor record of predicting animal responses to fire, at both species and assemblage levels. As a consequence, there is limited information to guide fire regime management for biodiversity conservation. We investigated a key research gap in the fire ecology literature; that is, the response of an anuran assemblage to variation in the fire return interval. We tested two hypotheses using a spatially‐explicit fire database collected over a 40 year period: 1) species richness would peak at intermediate levels of disturbance. 2) Species with traits which enabled them to escape fire – burrowing or canopy dwelling – would be better able to survive fires, resulting in higher levels of occurrence in frequently burned sites. We found no evidence for either a reduction in species richness at locations with short fire return intervals, or a peak in species richness at intermediate levels of disturbance. Although we found some support for individual species responses to fire return intervals, these were inconsistent with the interpretation of burrowing or climbing being functional traits for fire‐avoidance. Instead burrowing and climbing species may be more likely to be disadvantaged by frequent fire than surface dwelling frogs. More generally, our results show that many species in our study system have persisted despite a range of fire frequencies, and therefore that active management of fire regimes for anuran persistence may be unnecessary. The responses of anurans to fire in this location are unlikely to be predictable using simple life‐history traits. Future work should focus on understanding the mechanistic underpinnings of fire responses, by integrating information on animal behavior and species’ ecological requirements.  相似文献   

2.
A number of postcranial specimens of Neosaimiri fieldsi, a Middle Miocene platyrrhine, were discovered in 1988, 1989, and 1990 at La Venta, Colombia. Until recently only three postcranial specimens of this species had been discovered and the present material adds further information about this taxon's postcranial morphology. In overall skeletal dimensions and in postcranial features, Neosaimiri is most similar to Saimiri among extant medium-sized platyrrhines, but differs from Saimiri in having more rugose surface markings, a longer olecranon, a smaller anterior process of the distal tibia, an absence of a distal surface extension on the anterior tibial shaft, an absence of an anterior midtrochlear depression of the talus, and a shorter distal calcaneus relative to the calcaneal tuberosity. These differences suggest that Neosaimiri was relatively heavily built, possessed a more dominant forelimb in quadrupedal progression, and utilized a less stabilized upper ankle joint, and a shorter power arm for plantarflexion. Neosaimiri is interpreted as an arboreal quadruped with frequent leaping across arboreal gaps, as in extant Saimiri, with perhaps less frequent running and leaping than in Saimiri. As with the dentition, the postcranial specimens suggest the close relationship between Neosaimiri and extant Saimiri. Am J Phys Anthropol 102:515–544, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The land snail genus Mandarina has undergone extensive radiation within the Bonin Islands in the west Pacific. The preferred above-ground vegetation heights of sympatric species were clearly different. They separated into arboreal, semi-arboreal, exposed ground and sheltered ground ecotypes. Shells of species with different ecotypes differ markedly, but shells of species with the same ecotype are very similar to each other. Shell morphologies of some phylogenetically distantly related species with the same ecotype were indistinguishable. Character evolution estimated parsimoniously using a phylogenetic tree suggests that the speciation among sympatric species is accompanied by ecological and morphological diversification. In addition, species coexistence of Mandarina is related to niche differentiation. The above findings suggest that ecological interactions among species contribute to the ecological and morphological diversification and radiation of these land snails in this depauperate environment.  相似文献   

4.
Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.  相似文献   

5.
The evolution of behavioral and ecological specialization can have marked effects on the tempo and mode of phenotypic evolution. Head-first burrowing has been shown to exert powerful selective pressures on the head and body shapes of many vertebrate and invertebrate taxa. In wrasses, burrowing behaviors have evolved multiple times independently, and are commonly used in foraging and predator avoidance behaviors. While recent studies have examined the kinematics and body shape morphology associated with this behavior, no study to-date has examined the macroevolutionary implications of burrowing on patterns of phenotypic diversification in this clade. Here, we use three-dimensional geometric morphometrics and phylogenetic comparative methods to study the evolution of skull shape in fossorial wrasses and their relatives. We test for skull shape differences between burrowing and non burrowing wrasses and evaluate hypotheses of shape convergence among the burrowing wrasses. We also quantify rates of skull shape evolution between burrowing and non burrowing wrasses to test for whether burrowing constrains or accelerates rates of skull shape evolution in this clade. We find that while burrowing and non burrowing wrasses exhibit similar degrees of morphological disparity, for burrowing wrasses, it took nearly twice as long to amass this disparity. Furthermore, while the disparities between groups are evenly matched, we find that most burrowing species are confined to a particular region of shape space with most species exhibiting narrower heads than many non-burrowing species. These results suggest head-first burrowing constrains patterns of skull shape diversification in wrasses by potentially restricting the range of phenotypes that can perform this behavior.  相似文献   

6.
In Lake Malawi, two ecologically distinct lineages of cichlid fishes (rock‐ vs sand‐dwelling ecotypes, each comprised of over 200 species) evolved within the last million years. The rock‐dwelling species (Mbuna) are aggressively territorial year‐round and males court and spawn with females over rocky substrate. In contrast, males of sand‐dwelling species are not territorial and instead aggregate on seasonal breeding leks in which males construct courtship “bowers” in the sand. However, little is known about how phenotypic variation in aggression is produced by the genome. In this study, we first quantify and compare behavior in seven cichlid species, demonstrating substantial ecotype and species differences in unconditioned mirror‐elicited aggression. Second, we compare neural activity in mirror‐elicited aggression in two representative species, Mchenga conophoros (sand‐dwelling) and Petrotilapia chitimba (rock‐dwelling). Finally, we compare gene expression patterns between these two species, specifically within neurons activated during mirror aggression. We identified a large number of genes showing differential expression in mirror‐elicited aggression, as well as many genes that differ between ecotypes. These genes, which may underly species differences in behavior, include several neuropeptides, genes involved in the synthesis of steroid hormones and neurotransmitter activity. This work lays the foundation for future experiments using this emerging genetic model system to investigate the genomic basis of evolved species differences in both brain and behavior.  相似文献   

7.
Most omomyids are relatively small bodied (e.g. <500 g), but beginning in the middle Eocene, some omomyids began to grow larger. The largest omomyids occur in the late middle Eocene during the Uintan NALMA, reaching an estimated body mass over 1 kg. The hind limb skeleton of small omomyids is relatively well known, and is generally thought to show active arboreal quadrupedal and leaping adaptations. New postcranial specimens of previously unknown elements from the larger Uintan omomyids, Ourayia (two species), Chipetaia lamporea, and Mytonius hopsoni have recently been recovered from the Uinta Formation, Utah, and from the Mission Valley Formation, California, and they provide additional information concerning their locomotor behavior.The new specimens include several distal tibiae, partial calcanei, a complete talus and a proximal first metatarsal of Chipetaia; distal femora, distal tibiae, cuboids, and partial calcanei of Ourayia uintensis; a complete calcaneus of Ourayia sp.; and a partial calcaneus and talus of Mytonius. Metric analysis of these elements, together with qualitative observations of non-metric traits, indicate that Ourayia and Chipetaia show equal or greater development of traits associated with leaping behavior (including elongation of the calcaneus, navicular and cuboid) than do smaller omomyids from North America. The elements of Mytonius, although fragmentary, lack some leaping features that are well-developed in Ourayia and Chipetaia, suggesting that Mytonius may have relied more on arboreal quadrupedal locomotion than on leaping.  相似文献   

8.
Species that inhabited Europe during the Late Quaternary were impacted by temperature changes and early humans, resulting in the disappearance of half of the European large mammals. However, quantifying the relative importance that each factor had in the extinction risk of species has been challenging, mostly due to the spatio‐temporal biases of fossil records, which complicate the calibration of realistic and accurate ecological niche modeling. Here, we overcome this problem by using ecotypes, and not real species, to run our models. We created 40 ecotypes with different temperature requirements (mean temperature from ?20 °C to 25 °C and temperature range from 10 °C to 40 °C) and used them to quantify the effect of climate change and human impact. Our results show that cold‐adapted ecotypes would have been highly affected by past temperature changes in Europe, whereas temperate and warm‐adapted ecotypes would have been positively affected by temperature change. Human impact affected all ecotypes negatively, and temperate ecotypes suffered the greatest impacts. Based on these results, the extinction of cold‐adapted species like Mammuthus primigenius may be related to temperature change, while the extinction of temperate species, like Crocuta crocuta, may be related to human impact. Our results suggest that temperature change and human impact affected different ecotypes in distinct ways, and that the interaction of both impacts may have shaped species extinctions in Europe.  相似文献   

9.
Support for the theory of ecological speciation requires evidence for ecological divergence between species which directly or indirectly causes reproductive isolation. This study investigates effects of ecological vs. genetic disparity of parental species on the presence of endogenous selection (deformation and mortality rates) and potential sources of exogenous selection (growth rates and hatch timing) on hybrids. Hybrid embryonic development is analysed in a common‐garden full‐sib cross of three species belonging to two different ecotypes within the Coregonus lavaretus species flock in the central Alpine region of Europe. Although hatch timing was similar across the three species, embryonic growth rates and egg sizes differed between ecotypes. This led to a mismatch between embryonic growth rate and egg size in hybrid crosses that reveals epistasis between the maternal and embryonic genomes and transgressive hatch times that were asynchronous with control crosses. A strong constraint of egg size to embryo size at late development was also evident. We argue that this demonstrates potential for coadaptation of a maternal trait (egg size) with offspring growth rate to be an important source of selection against hybridization between ecotypes with different egg sizes. Implications for the measurement and quantification of early life‐history traits affected by this additive relationship, such as hatch day and larval size, are also discussed.  相似文献   

10.
Examination of the form of the hip and thigh through discriminant function analysis of a series of 15 osteometric indices taken upon 289 specimens of 20 sets of leaping prosimians distinguishes four groups. Around a centrally located group of the various species of Lemur are three separate rays: one containing the three indriid genera (Propithecus, Indri, and Avahi), a second including the galagines and Tarsius, and a third comprising the two species of Cheirogaleus and the genus Microcebus. The lemurine genus Lepilemur lies intermediately between the central group of lemurs and the indriids. The lemurine genus Hapalemur lies intermediately between, on the one hand, the centrally located group of lemurs, and on the other, each of the two groups, cheirogaleines and galagines-plus-tarsiers. The arrangements of the particular species within each of these last two groups separately is from those that leap least to those that leap most. Given that the structure of the hip and thigh is related to the biomechanical demands of leaping, the existence of these separate morphological groups implies the existence of different biomechanical modes of leaping. Such meager taxonomic and behavioral information as is available seems to support this idea, although it is not impossible that other aspects of the behaviors of the animals may also be associated. This information sets up a series of new behavioral hypotheses that might be tested by better field and laboratory studies aimed more precisely at locomotion. And this information may be useful in helping to make assessments of particular fossils and in helping determine how various prosimian locomotor modes may have evolved.  相似文献   

11.
The relationship between climate and morphology is important to understand in view of the rapid rate of climate change occurring today; however, this relationship has not been fully explored in many mammalian groups. We use postcranial indices to explore the association between climate and morphology in the mammalian order Carnivora. Carnivora is a good group to use for this analysis because it includes species with a variety of locomotor ecologies that live in almost every type of habitat on Earth. We measured postcrania of 121 carnivoran species from around the world, combined with habitat and climate data from the BIOCLIM database and the NCEAS Paleocommunities Working Group to examine correlations between postcrania, temperature and precipitation. We analyzed these data using correspondence analysis and multiple linear regressions. We found three postcranial indices that were significantly correlated with climate. Brachial index (radius/humerus) and shoulder moment (length deltopectoral crest/length humerus) were both significantly associated with temperature and precipitation, while greater trochanter height (as proportion of femur length) was associated with precipitation. We found that these indices were indirectly related to climate via the strong association between climate and locomotor ecologies. This relationship between climate and postcranial proportions can be used in future studies: for paleo‐climate reconstruction in carnivore localities and for trait‐based identification of species vulnerability as climate change continues.  相似文献   

12.
Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation (‘pelagic’ and ‘coastal’) of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species.  相似文献   

13.
The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second‐generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations.  相似文献   

14.
Life‐history transitions have evolved repeatedly in numerous taxa, although the ecological and evolutionary conditions favouring such transitions in the presence of gene flow remain poorly understood. The present study aimed to disentangle the effects of isolation‐by‐distance and isolation‐by‐environment on genetic differentiation between two sympatric life‐history ecotypes. Using 14 microsatellite loci, we first characterized amphidromous and freshwater groups of Cottus asper in a high gene flow setting in the Lower Fraser River system (south‐western British Columbia, Canada) to test for the effects of habitat and geographical distance on the distribution of life‐history ecotypes. Within the main river channel, no genetic differentiation was found, whereas tributaries even close to the estuary were genetically differentiated. Partial mantel tests confirmed that genetic differentiation between river tributaries and the main channel was independent from geographical distance, with distance‐scaled migration rates indicating reduced gene flow from the main channel into the tributaries. Our results suggest that isolation‐by‐environment can play an important role for the early stage of life‐history transitions, and may promote differentiation among life‐history ecotypes despite the presence of gene flow. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 943–957.  相似文献   

15.
Animals from different clades but subject to similar environments often evolve similar body shapes and physiological adaptations due to convergent evolution, but this has been rarely tested at the transcontinental level and across entire classes of animal. Australia's biome diversity, isolation and aridification history provide excellent opportunities for comparative analyses on broad‐scale macroevolutionary patterns. We collected morphological and environmental data on eighty‐four (98%) Australian hylid frog species and categorized them into ecotypes. Using a phylogenetic framework, we tested the hypothesis that frogs from the same ecotype display similar body shape patterns: (i) across all the Australian hylids, and (ii) through comparison with a similar previous study on 127 (97%) Australian myobatrachid species. Body size and shape variation did not follow a strong phylogenetic pattern and was not tightly correlated with environment, but there was a stronger association between morphotype and ecotype. Both arboreal and aquatic frogs had long limbs, whereas limbs of fossorial species were shorter. Other terrestrial species were convergent on the more typical frog body shape. We quantified the strength of morphological convergence at two levels: (i) between fossorial myobatrachid and hylid frogs, and (ii) in each ecomorph within the hylids. We found strong convergence within ecotypes, especially in fossorial species. Ecotypes were also reflected in physiological adaptations: both arboreal and cocooned fossorial frogs tend to have higher rates of evaporative water loss. Our results illustrate how adaptation to different ecological niches plays a crucial role in morphological evolution, boosting phenotypic diversity within a clade. Despite phylogenetic conservatism, morphological adaptation to repeatedly emerging new environments can erase the signature of ancestral morphotypes, resulting in phenotypic diversification and convergence both within and between diverse clades.  相似文献   

16.
The endemic land snail genus Mandarina of the oceanic Bonin Islands shows exceptionally diverse morphological and ecological traits. Previous studies have already provided evidence that speciation on different islands of the three main archipelagos was such that similar ecotypes evolved independently in different lineages and islands. Here we present data to show that the same species can have different ecotypes. As most of the characters involved are inherited, then variation between ecotypes must represent genetic differences between populations. We then show that the radiation on the Bonin Islands is derived from a single colonization event, and use a mitochondrial phylogeny to provide evidence for a burst of cladogenesis soon after colonization. As divergent selection has previously been implicated in causing differences between Mandarina species, and theory predicts that most of the speciation should have taken place early in their history, then the study adds to the evidence for an adaptive radiation by ecological speciation in Mandarina . However, while the diversity of ecotypes present at each site is dependent on the regime of natural selection and competition, geography still must have an important role.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 269–282.  相似文献   

17.
Species with specialized ecological interactions present significant conservation challenges. In plants that attract pollinators with pollinator‐specific chemical signals, geographical variation in pollinator species may indicate the presence of cryptic plant taxa. We investigated this phenomenon in the rare sexually deceptive orchid Drakaea elastica using a molecular phylogenetic analysis to resolve pollinator species boundaries, pollinator choice experiments and a population genetic study of the orchid. Pollinator choice experiments demonstrated the existence of two ecotypes within D. elastica, each attracting their own related but phylogenetically distinct pollinator species. Despite the presence of ecotypes, population genetic differentiation was low across populations at six microsatellite loci (FST = 0.026). However, Bayesian STRUCTURE analysis revealed two genetic clusters, broadly congruent with the ecotype distributions. These ecotypes may represent adaptation to regional variation in pollinator availability and perhaps the early stages of speciation, with pronounced morphological and genetic differences yet to evolve. Resolution of the taxonomic status of the D. elastica ecotypes is required as this has implications for conservation efforts and allocation of management funding. Furthermore, any reintroduction programmes must incorporate knowledge of ecotype distribution and pollinator availability to ensure reproductive success in restored populations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 124–140.  相似文献   

18.
Pocket gophers (family Geomyidae) are the dominant burrowing rodents in North America today. Their fossil record is also incredibly rich; in particular, entoptychine gophers, a diverse extinct subfamily of the Geomyidae, are known from countless teeth and jaws from Oligocene and Miocene-aged deposits of the western United States and Mexico. Their postcranial remains, however, are much rarer and little studied. Yet, they offer the opportunity to investigate the locomotion of fossil gophers, shed light on the evolution of fossoriality, and enable ecomorphological comparisons with contemporaneous rodents. We present herein a quantitative study of the cranial and postcranial remains of eight different species of entoptychine gophers as well as many contemporary rodent species. We find a range of burrowing capabilities within Entoptychinae, including semifossorial scratch-digging animals and fossorial taxa with cranial adaptations to burrowing. Our results suggest the repeated evolution of chisel-tooth digging across genera. Comparisons between entoptychine gophers and contemporaneous rodent taxa show little ecomorphological overlap and suggest that the succession of burrowing rodent taxa on the landscape may have had more to do with habitat partitioning than competition.  相似文献   

19.
Speciation is often categorized based on geographic modes (allopatric, parapatric or sympatric). Although it is widely accepted that species can arise in allopatry and then later become sympatrically or parapatrically distributed, patterns in the opposite direction are also theoretically possible (e.g. sympatric lineages or ecotypes becoming parapatric), but such patterns have not been shown at a macrogeographic scale. Here, we analyse genetic, climatic, ecological and morphological data and show that two typically sympatric colour morphs of the salamander Plethodon cinereus (redback and leadback) appear to have become parapatrically distributed on Long Island, New York, with pure‐redback populations in the west and pure‐leadback populations in the east (and polymorphic populations in between and on the mainland). In addition, the pure‐leadback populations in eastern Long Island are genetically, ecologically and morphologically divergent from both mainland and other Long Island populations, suggesting the possibility of incipient speciation. This parapatric separation seems to be related to the different ecological preferences of the two morphs, preferences which are present on the mainland and across Long Island. These results potentially support the idea that spatial segregation of sympatric ecotypes may sometimes play an important part in parapatric speciation.  相似文献   

20.
Living amphibians exhibit a diversity of ecologies, life histories, and species‐rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species‐level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well‐supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号