首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose natural role seems to be participation in many physiologic and pathological processes. Prolonged increased SAA level in a number of chronic inflammatory and neoplastic diseases gives rise to reactive systemic amyloid A amyloidosis, where the N‐terminal 76‐amino acid residue‐long segment of SAA is deposited as amyloid fibrils. Recently, a specific interaction between SAA and the ubiquitous inhibitor of cysteine proteases—human cystatin C (hCC)—has been described. Here, we report further evidence corroborating this interaction, and the identification of the SAA and hCC binding sites in the SAA–hCC complex, using a combination of selective proteolytic excision and high‐resolution mass spectrometry. The shortest binding site in the SAA sequence was determined as SAA(86–104), whereas the binding site in hCC sequence was identified as hCC(96–102). Binding specificities of both interacting sequences were ascertained by affinity experiments (ELISA) and by registration of mass spectrum of SAA–hCC complex. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Serum amyloid A (SAA) is a multifunctional acute‐phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N‐terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well‐documented association of SAA with high‐density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86–104). The role of this SAA C‐terminal fragment as a ligand‐binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro→Ala variants. Our results clearly show that the SAA(86–104) 19‐peptide has rather unordered structure with bends in its C‐terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA‐like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86–104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC–SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Cystatin C originally identified as a cysteine proteases inhibitor has a broad spectrum of biological roles ranging from inhibition of extracellular cysteine protease activities, bone resorption, and modulation of inflammatory responses to stimulation of fibroblasts proliferation. There is an increasing number of evidence to suggest that human cystatin C (hCC) might play a protective role in the pathophysiology of sporadic Alzheimer's disease. In vivo and in vitro results well documented the association of hCC with Aβ and the hCC‐induced inhibition of Aβ fibril formation. In our earlier work, using a combination of selective proteolytic methods and MS spectroscopy, C‐terminal fragment hCC(101‐117) was identified as the Aβ‐binding region. The fragment of Aβ peptide responsible for the complex formation with hCC was found in the middle, highly hydrophobic part, Aβ(17‐24). Structures and affinities of both Aβ and hCC binding sites were characterized by the enzyme‐linked immunosorbent assay‐like assay, by surface plasmon resonance, and by nano‐ESI‐FTICR MS of the hCC–Aβbinding peptide complexes. In the in vitro inhibition studies, the binding cystatin sequence, hCC(101‐117), revealed the highest relative inhibitory effect toward Aβ‐fibril formation. Herein, we present further studies on molecular details of the hCC‐Aβ complex. With Ala substitution, affinity experiments, and enzyme‐linked immunosorbent assay‐like assays for the Aβ‐binding fragment, hCC(101‐117), and its variants, the importance of individual amino acid residues for the protein interaction was evaluated. The results were analyzed using hCC(101‐117) nuclear magnetic resonance structural data with molecular dynamics calculations and molecular modeling of the complexes. The results point to conformational requirements and special importance of some amino acid residues for the protein interaction. The obtained results might be helpful for the design of low molecular compounds modulating the biological role of both proteins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Polymorphism of tissue and serum amyloid A (AA and SAA) proteins in the mouse   总被引:12,自引:0,他引:12  
Amino acid sequence studies of the amino terminal 25 residues of amyloid A (AA) protein and the serum precursor (SAA) induced with casein or LPS indicate differences in the sequence at position 6 and significant heterogeneity at several other positions in SAA. These findings suggest that SAA is a polymorphic serum protein and raise the possibility that only certain forms of SAA are processed to the tissue amyloid fibril.  相似文献   

5.
Amyloid A (AA) amyloidosis occurs spontaneously in many mammals and birds, but the prevalence varies considerably among different species, and even among subgroups of the same species. The Blue fox and the Gray fox seem to be resistant to the development of AA amyloidosis, while Island foxes have a high prevalence of the disease. Herein, we report on the identification of AA amyloidosis in the Red fox (Vulpes vulpes). Edman degradation and tandem MS analysis of proteolyzed amyloid protein revealed that the amyloid partly was composed of full‐length SAA. Its amino acid sequence was determined and found to consist of 111 amino acid residues. Based on inter‐species sequence comparisons we found four residue exchanges (Ser31, Lys63, Leu71, Lys72) between the Red and Blue fox SAAs. Lys63 seems unique to the Red fox SAA. We found no obvious explanation to how these exchanges might correlate with the reported differences in SAA amyloidogenicity. Furthermore, in contrast to fibrils from many other mammalian species, the isolated amyloid fibrils from Red fox did not seed AA amyloidosis in a mouse model.  相似文献   

6.
A 12,000 dalton serum amyloid A protein (SAA) has been isolated by chromatography on Sephadex in 10% formic acid. It is similar immunologically to the previously characterized 8500 dalton tissue amyloid A (AA) protein. The results of amino acid analyses, peptide maps, and the identity of the first 11 residues of the SAA and AA proteins support the idea that AA represents the amino terminal fragment of SAA and is derived from it by proteolysis.  相似文献   

7.
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4 °C, but were unstructured at 37 °C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37 °C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4 °C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.  相似文献   

8.
The amyloid-relates serum protein SAA has been isolated by gel filtration in 10% formic acid from three animal species: mink, mouse, rabbit. Sera used in the isolation procedure were obtained from animals in which high concentrations of SAA had been induced by treatment with LPS. The isolated SAA proteins had a subunit size similar to that of human SAA, with m.w. values ranging from 10,000 to 11,700 (estimated by gel filtration in 6 M guanidine-HC1) or 12,400 to 15,000 (estimated by SDS-PAGE). The m.w. studies and amino acid sequence data indicated that SAA and the amyloid fibril protein AA in the mouse, and probably also the mink, are related in the same way as in man, the two proteins having common NH2-terminal amino acid sequences and SAA being extended by 20 to 40 residues at the COOH-terminal end of the molecule.  相似文献   

9.
Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.  相似文献   

10.
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.  相似文献   

11.
The nucleotide sequences of two mink serum amyloid A (SAA) cDNA clones have been analyzed, one (SAA1) 776 base pairs long and the other (SAA2) 552 base pairs long. Significant differences were discovered when derived amino acid sequences were compared with data for apoSAA isolated from high density lipoprotein. Previous studies of mink protein SAA and amyloid protein A (AA) suggest that only one SAA isotype is amyloidogenic. The cDNA clone for SAA2 defines the "amyloid prone" isotype while SAA1 is found only in serum. Mink SAA1 has alanine in position 10, isoleucine in positions 24, 67, and 71, lysine in position 27, and proline in position 105. Residue 10 in mink SAA2 is valine while arginine and asparagine are at positions 24 and 27, respectively, all characteristics of protein AA isolated from mink amyloid fibrils. Mink SAA2 also has valine in position 67, phenylalanine in position 71, and amino acid 105 is serine. It remains unknown why these six amino acid substitutions render SAA2 more amyloidogenic than SAA1. Eighteen hours after lipopolysaccharide stimulation, mink SAA mRNA is abundant in liver with relatively minor accumulations in brain and lung. Genes encoding both SAA isotypes are expressed in all three organs while no SAA mRNA was detectable in amyloid prone organs, including spleen and intestine, indicating that deposition of AA from locally synthesized SAA is unlikely. A third mRNA species (2.2 kilobases) was identified and hybridizes with cDNA probes for mink SAA1 and SAA2. In addition to a major primary translation product (molecular mass 14,400 Da) an additional product with molecular mass 28,000 Da was immunoprecipitable.  相似文献   

12.
Amyloid fibrils from a patient with diffuse amyloid disease are dissociated in 6 m guanidine hydrochloride and fractionated by gel chromatography. Two major components are separated on Sepharose 6B. Both proteins are characterized by chromatography, immunodiffusion, discontinuous gel electrophoresis, amino acid tryptic peptide mapping and amino acid sequence analysis. The smaller of the two components is typical of the known protein AA by size (8400 daltons), amino acid composition and a 30-residue N-terminal sequence. The larger of the components (25,000 daltons) undergoes electrophoresis as a single band and appears unaffected by thiol reduction. It differs from protein AA in amino acid content and by its tryptic peptide map, although it contains an N-terminal amino acid sequence identical to protein AA when carried to 20 residues. Treatment of this larger component by mild acid hydrolysis results in the release of the 8400-dalton protein AA. Fractionation after guanidine hydrochloride treatment of this particular amyloid fibril preparation is compared to the fractionation of a typical secondary amyloid preparation that contains only protein AA as the major component. The origin and relationship of the 8,400- and 25,000-dalton protein components is discussed.  相似文献   

13.
Serum amyloid A1 (SAA1) is an apolipoprotein that binds to the high‐density lipoprotein (HDL) fraction of the serum and constitutes the fibril precursor protein in systemic AA amyloidosis. We here show that HDL binding blocks fibril formation from soluble SAA1 protein, whereas internalization into mononuclear phagocytes leads to the formation of amyloid. SAA1 aggregation in the cell model disturbs the integrity of vesicular membranes and leads to lysosomal leakage and apoptotic death. The formed amyloid becomes deposited outside the cell where it can seed the fibrillation of extracellular SAA1. Our data imply that cells are transiently required in the amyloidogenic cascade and promote the initial nucleation of the deposits. This mechanism reconciles previous evidence for the extracellular location of deposits and amyloid precursor protein with observations the cells are crucial for the formation of amyloid.  相似文献   

14.
1. The complete amino acid sequences of canine and feline amyloid A (AA) proteins were determined and compared with the sequence of human AA protein. 2. The dog and cat AA proteins were 84% homologous with human AA through residue 69. 3. Between the residues which correspond to 69 and 70 in the human sequence, the dog and cat proteins had an insertion of eight amino acids after which homology with human AA resumed. 4. While human AA commonly ends at position 76, the carboxyl termini of dog and cat AA proteins corresponded to position 86 in the sequence of the precursor protein-serum amyloid A. 5. These results are particularly interesting with respect to evolution of the serum amyloid A gene family.  相似文献   

15.
Serum amyloid A protein (SAA) is an acute-phase apolipoprotein of high-density lipoprotein (HDL). Its N-terminal sequence is identical with that of amyloid A protein (AA), the subunit of AA amyloid fibrils. However, rats do not develop AA amyloidosis, and we report here that neither normal nor acute-phase rat HDL contains a protein corresponding to SAA of other species. mRNA coding for a sequence homologous with the C-terminal but not with the N-terminal part of human SAA is synthesized in greatly increased amounts in acute-phase rat liver. These observations indicate that the failure of rats to develop AA amyloid results from the absence of most of the AA-like part of their SAA-like protein, and that the N-terminal portion of SAA probably contains the lipid-binding sequences.  相似文献   

16.
Summary Serum amyloid A (SAA), an acute-phase reactant, exists naturally as a minor protein in the sera of healthy individuals. However, its levels in sera are increased markedly during various transient and chronic inflammatory diseases, often concomitantly with accumulation at inflicted sites. SAA is synthesized mainly in the liver following the synergistic action of cytokines, mainly tumor necrosis factor-α (TNF-α) and interleukin-1 and-6 (IL-1 and IL-6). It was already shown by us that upon interaction with SAA or amyloid A (AA), the extracellular matrix (ECM) and laminin induced the adhesion of resting human CD4+ T-cells in an apparently β1-integrin-mediated manner. Herein we have shown that the SAA-ECM complex modulates the regulation of cytokine synthesis by human T-lymphocytes. The SAA-ECM complex dramatically enhanced the release of TNF-α by human T-cells in a dose-dependent manner, reaching its maximal effect in the presence of 100 μM recombinant SAA. The SAA domain, responsible for the enhanced release of TNF-α by human T-lymphocytes, is apparently the amyloid A protein (AA, i.e. SAA2-82). Specifically, TNF-α enhanced secretion is mediated through intimate interactions of SAA/AA, with laminin. Thus, the ECM serving as a temporary anchorage site for SAA and AA seems to be involved in regulating TNF-α secretion and the recruitment and accumulation of immunocytes in extravascular, inflammatory compartments.  相似文献   

17.
18.
Amyloid A protein (AA), the major fibril protein in AA-amyloidosis, is an N-terminal cleavage product of the precursor protein, serum amyloid A (SAA). Using mass spectrometry and amino-acid sequencing, we identified and characterized two novel AA protein subsets co-deposited as amyloid fibrils in an patient having AA-amyloidosis associated with rheumatoid arthritis. One of the AA proteins corresponded to positions 2–76 (or 75) of SAA2α and the other corresponded to positions 2–76 (or 75) of known SAA1 subsets, except for position 52 or 57, where SAA1α has valine and alanine and SAA1β has alanine and valine in position 52 and 57, respectively, whereas the AA protein had alanine at the both positions. Our findings (1), demonstrate that not only one but two SAA subsets could be deposited together as an AA-amyloid in a single individual and (2), support the existence of a novel SAA1 allotype, i.e., SAA152,57Ala.  相似文献   

19.
DNA sequence evidence for polymorphic forms of human serum amyloid A (SAA)   总被引:8,自引:0,他引:8  
Serum amyloid A (SAA) is an acute-phase reactant and precursor to amyloid A protein, the major constituent of the fibril deposits of reactive amyloidosis. The factors determining whether the 104-amino acid SAA molecule is converted into the 76-amino acid amyloid A protein and deposited as fibrils are not known. As an initial step toward investigating the possibility that a particular primary structure of SAA is involved in amyloid formation, we have cloned and determined the nucleotide sequence of human SAA-specific cDNAs. The first clone, selected using an oligonucleotide probe, was shown to encode the signal peptide and amino-terminal region of SAA. The cDNA of this clone served as probe in the selection of two distinct, full-length SAA cDNAs, initially differentiated by the presence (pSAA21) or absence (pSAA82) of a PstI site in the coding sequence. The complete nucleotide sequence of pSAA82 cDNA was determined. Since there appear to be multiple human SAA alleles, it is conceivable that their differential expression is important to amyloid formation.  相似文献   

20.
The structure of a human serum amyloid A (SAA) genomic clone (SAAg9) has been analyzed and the nucleotide sequence of the coding regions is compared with that of the cDNA for apoSAA1. The leader and coding sequences of exons 2 and 3 are identical to SAA1. However, there are 10 nucleotide and 7 derived amino acid substitutions in exon 4. These changes are identical to the amino acid sequence of the amyloid protein associated with familial Mediterranean fever. In particular, the amino acid substitution (Thr to Phe) at residue 69 of SAA1 may have an important role in this type of hereditary amyloidosis. The genomic clone SAAg9 has been transfected into mouse L cells, and constitutive expression of human specific mRNA and protein were observed in stable transfected clones. The expression of both SAA mRNA and protein were increased by incubation of the transfected cells with purified human interleukin-1 (IL-1), both human and mouse recombinant IL-1, and recombinant human tumor necrosis factor alpha. The induction of SAA is pretranslational and is likely to be mediated by protein factor(s) since incubation with cycloheximide diminished IL-1-dependent increase in SAA mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号