首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Isoforms A (LGB‐A) and B (LGB‐B) of bovine lactoglobulin, the milk protein, differ in positions 64 (D?G) and 118 (V?A). Interactions of LGB‐A and LGB‐B with sodium dodecyl sulfate (SDS), dodecyltrimethylammonium chloride (DTAC) and lauric acid (LA), 12‐carbon ligands possessing differently charged polar groups, were investigated using isothermal titration calorimetry and X‐ray crystallography, to study the proton linkage phenomenon and to distinguish between effects related to different isoforms and different ligand properties. The determined values of ΔS and ΔH revealed that for all ligands, binding is entropically driven. The contribution from enthalpy change is lower and shows strong dependence on type of buffer that indicates proton release from the protein varying with protein isoform and ligand type and involvement of LA and Asp64 (in isoform A) in this process. The ligand affinities for both isoforms were arranged in the same order, DTAC < LA < SDS, and were systematically lower for variant B. The entropy change of the complexation process was always higher for isoform A, but these values were compensated by changes in enthalpy, resulting in almost identical ΔG for complexes of both isoforms. The determined crystal structures showed that substitution in positions 64 and 118 did not influence the overall structure of LGB complexes. The chemical character of the ligand polar group did not affect the position of its aliphatic chain in protein β‐barrel, indicating a major role of hydrophobic interactions in ligand binding that prevailed even with the repulsion between positively charged DTAC and lysine residues located at binding site entrance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

3.
4.
P‐selectin glycoprotein ligand‐1 (PSGL‐1) is a homodimeric mucin ligand that is important to mediate the earliest adhesive event during an inflammatory response by rapidly forming and dissociating the selectin‐ligand adhesive bonds. Recent research indicates that the noncovalent associations between the PSGL‐1 transmembrane domains (TMDs) can substitute for the C320‐dependent covalent bond to mediate the dimerization of PSGL‐1. In this article, we combined TOXCAT assays and molecular dynamics (MD) simulations to probe the mechanism of PSGL‐1 dimerization. The results of TOXCAT assays and Martini coarse‐grained molecular dynamics (CG MD) simulations demonstrated that PSGL‐1 TMDs strongly dimerized in a natural membrane and a leucine zipper motif was responsible for the noncovalent dimerization of PSGL‐1 TMD since mutations of the residues that occupied a or d positions in an (abcdefg)n leucine heptad repeat motif significantly reduced the dimer activity. Furthermore, we studied the effects of the disulfide bond on the PSGL‐1 dimer using MD simulations. The disulfide bond was critical to form the leucine zipper structure, by which the disulfide bond further improved the stability of the PSGL‐1 dimer. These findings provide insights to understand the transmembrane association of PSGL‐1 that is an important structural basis for PSGL‐1 preferentially binding to P‐selectin to achieve its biochemical and biophysical functions.  相似文献   

5.
Hydrogen bonds are important interaction forces observed in protein structures. They can be classified as stronger or weaker depending on their energy, thereby reflecting on the type of donor. The contribution of weak hydrogen bonds is deemed as an important factor toward structure stability along with the stronger bonds. One such bond, the C‐H…O type hydrogen bond, is shown to make a contribution in maintaining three dimensional structures of proteins. Apart from their presence within protein structures, the role of these bonds in protein–ligand interactions is also noteworthy. In this study, we present a statistical analysis on the presence of C‐H…O hydrogen bonds observed between FKBPs and their cognate ligands. The FK506‐binding proteins (FKBPs) carry peptidyl cis–trans isomerase activity apart from the immunosuppressive property by binding to the immunosuppressive drugs FK506 or rapamycin. Because the active site of FKBPs is lined up by many hydrophobic residues, we speculated that the prevalence of C‐H…O hydrogen bonds will be considerable. In a total of 25 structures analyzed, a higher frequency of C‐H…O hydrogen bonds is observed in comparison with the stronger hydrogen bonds. These C‐H…O hydrogen bonds are dominated by a highly conserved donor, the Cα/β of Val55 and an acceptor, the backbone oxygen of Glu54. Both these residues are positioned in the β4‐α1 loop, whereas the other residues Tyr26, Phe36 and Phe99 with higher frequencies are lined up at the opposite face of the active site. These preferences could be implicated in FKBP pharmacophore models toward enhancing the ligand affinity. This study could be a prelude to studying other proteins with hydrophobic pockets to gain better insights into ligand recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Although the thermodynamic principles that control the binding of drug molecules to their protein targets are well understood, the detailed process of how a ligand reaches a protein binding site has been an intriguing question over decades. The short time interval between the encounter between a ligand and its receptor to the formation of the stable complex has prevented experimental observations. Bovine β‐lactoglobulin (βlg) is a lipocalin member that carries fatty acids (FAs) and other lipids in the cellular environment. Βlg accommodates a FA molecule in its highly hydrophobic cavity and exhibits the capability of recognizing a wide variety of hydrophobic ligands. To elucidate the ligand entry process on βlg, we report molecular dynamics simulations of the encounter between palmitate (PA) or laurate (LA) and βlg. Our results show that residues localized in loops at the cavity entrance play an important role in the ligand penetration process. Analysis of the short‐term interaction energies show that the forces operating on the systems lead to average conformations very close to the crystallographic holo‐forms. Whereas the binding free energy analysis using the molecular mechanics Generalized Born surface area method shows that these conformations were thermodynamically favorable. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 744–757, 2014.  相似文献   

8.
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
An understanding of the interplay between structure and energetics is crucial for the optimization of modern protein engineering techniques. In this context, the study of natural isoforms is a subject of major interest, as it provides the scenario for analyzing mutations that have endured during biological evolution. In this study, we performed a comparative analysis of the ligand-recognition and homodimerization energetics of bovine β-lactoglobulin variants A (βlgA) and B (βlgB). These variants differ by only two amino-acid substitutions: 64th (Asp(A) → Gly(B)), which is fully exposed to the solvent, and 118th (Val(A) → Ala(B)), immersed in the hydrophobic core of the protein. Calorimetric measurements revealed significant enthalpic and entropic differences between the isoforms in both binding processes. A structural comparison suggests that a variation in the conformation of the loop C-D, induced by mutation Asp/Gly, could be responsible for the differences in ligand-binding energetics. While recognition of lauric acid was entropically driven, recognition of sodium dodecyl sulfate was both entropically and enthalpically driven, confirming the key role of the ligand polar moiety. Because of a more favorable enthalpy, the dimerization equilibrium constant of βlgB was larger than that of βlgA at room temperature, while the two dimers became similarly stable at 35 °C. The isoforms exchanged the same number of structural water molecules and protons and shared similar stereochemistry at the dimer interface. MD simulations revealed that the subunits of both variants become more flexible upon dimer formation. It is hypothesized that a larger increase of βlgA mobility could account for the dimerization energetic differences observed.  相似文献   

10.
For the optimal use of β‐lactoglobulin nanofibrils as a raw material in biological composites an in‐depth knowledge of their interactions with other constituents is necessary. To understand the effect of electrostatic interactions on the morphology of resulting complexes, β‐lactoglobulin nanofibrils were allowed to interact with pectins in which the amount of available negative charge was controlled by selecting their degree of methylesterification. In this study, citrus pectins having different degrees of methylesterification (~48, 67, 86, and 97%) were selected and interacted with nanofibrils at pH 2 and pH 3, where they possess a net positive charge. Electrostatic complexes formed between β‐lactoglobulin nanofibrils and all pectin types, except for the sample having a degree of methylesterification of 97%. The morphology of these complexes, however, differed significantly with the degree of methylesterification of the pectin, its concentration, and the pH of the medium, revealing that distinct desired biological architectures can be attained relatively easily through manipulating the electrostatic interactions. Interestingly, the pectin with a degree of methylesterification of 86% was found to crosslink the β‐lactoglobulin nanofibrils into ordered ‘nanotapes’.  相似文献   

11.
Martiniano Bello 《Biopolymers》2014,101(10):1010-1018
The bovine dairy protein β‐lactoglobulin (βlg) is a promiscuous protein that has the ability to bind several hydrophobic ligands. In this study, based on known experimental data, the dynamic interaction mechanism between bovine βlg and four fatty acids was investigated by a protocol combining molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MMGBSA) binding free energy calculations. Energetic analyses revealed binding free energy trends that corroborated known experimental findings; larger ligand size corresponded to greater binding affinity. Finally, binding free energy decomposition provided detailed information about the key residues stabilizing the complex. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1010–1018, 2014.  相似文献   

12.
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple‐ligand‐binding system, determining quantitative parameters such as a dissociation constant (Kd) is difficult. Here, we used a method we named CS‐PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β‐lactoglobulin (βLG) and 1‐anilinonaphthalene‐8‐sulfonate (ANS), which is a multiple‐ligand‐binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG–ANS complexes for each binding site. In addition, we determined the Kd values as 3.42 × 10−4M2 and 2.51 × 10−3M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable Kd values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS‐PCA was confirmed to provide not only the positions and the Kd values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein–ligand interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A functional proteomic technology using protein chip and molecular simulation was used to demonstrate a novel biomolecular interaction between P11, a peptide containing the Ser‐Asp‐Val (SDV) sequence and integrin αvβ3. P11 (HSDVHK) is a novel antagonistic peptide of integrin αvβ3 screened from hexapeptide library through protein chip system. An in silico docking study and competitive protein chip assay revealed that the SDV sequence of P11 is able to create a stable inhibitory complex onto the vitronectin‐binding site of integrin αvβ3. The Arg‐Gly‐Asp (RGD)‐binding site recognition by P11 was site specific because the P11 was inactive for the complex formation of a denatured form of integrin–vitronectin. P11 showed a strong antagonism against αvβ3‐GRGDSP interaction with an IC50 value of 25.72±3.34 nM, whereas the value of GRGDSP peptide was 1968.73±444.32 nM. The binding‐free energies calculated from the docking simulations for each P11 and RGD peptide were ?3.99 and ?3.10 kcal/mol, respectively. The free energy difference between P11 and RGD corresponds to approximately a 4.5‐fold lower Ki value for the P11 than the RGD peptide. The binding orientation of the docked P11 was similar to the crystal structure of the RGD in αvβ3. The analyzed docked poses suggest that a divalent metal–ion coordination was a common driving force for the formation of both SDV/αvβ3 and RGD/αvβ3 complexes. This is the first report on the specific recognition of the RGD‐binding site of αvβ3 by a non‐RGD containing peptide using a computer‐assisted proteomic approach.  相似文献   

14.
Interference with protein–protein interactions of interfaces larger than 1500 Å2 by small drug‐like molecules is notoriously difficult, particularly if targeting homodimers. The tRNA modifying enzyme Tgt is only functionally active as a homodimer. Thus, blocking Tgt dimerization is a promising strategy for drug therapy as this protein is key to the development of Shigellosis. Our goal was to identify hot‐spot residues which, upon mutation, result in a predominantly monomeric state of Tgt. The detailed understanding of the spatial location and stability contribution of the individual interaction hot‐spot residues and the plasticity of motifs involved in the interface formation is a crucial prerequisite for the rational identification of drug‐like inhibitors addressing the respective dimerization interface. Using computational analyses, we identified hot‐spot residues that contribute particularly to dimer stability: a cluster of hydrophobic and aromatic residues as well as several salt bridges. This in silico prediction led to the identification of a promising double mutant, which was validated experimentally. Native nano‐ESI mass spectrometry showed that the dimerization of the suggested mutant is largely prevented resulting in a predominantly monomeric state. Crystal structure analysis and enzyme kinetics of the mutant variant further support the evidence for enhanced monomerization and provide first insights into the structural consequences of the dimer destabilization. Proteins 2014; 82:2713–2732. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Chemical investigation of the glandular trichome exudate of Erodium pelargoniflorum (Geraniaceae) led to the isolation of two dodecyl disaccharide derivatives, named pelargoside A1 and pelargoside B1 ( 1 and 2 , resp.). The structures of 1 and 2 were determined as dodecyl 4‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐acetyl‐β‐D ‐fucopyranoside and dodecyl 3,4‐di‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐acetyl‐β‐D ‐fucopyranoside, respectively, by spectroscopic studies, including 2D‐NMR, and chemical transformations. In addition, undecyl, tridecyl, and tetradecyl homologs of 1 and 2 , named pelargosides A2–A4 and pelargosides B2–B4, were also characterized as minor constituents of the exudate.  相似文献   

16.
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166‐residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme‐bound forms were solved to near atomic resolution of 1.32 Å and 1.36 Å, respectively. The rate of hemin loss from the protein was measured to be 3.6 × 10?5 s?1, demonstrating that it binds heme specifically and with high affinity. The protein forms a compact 10‐stranded β‐barrel that is structurally similar to the lipocalins and fatty acid binding proteins (FABPs). One group of lipocalins, the nitrophorins (NP), are heme proteins involved in nitric oxide (NO) transport and show both sequence and structural similarity to the protein from At1g79260.1 and two human homologues, all of which contain a proximal histidine capable of coordinating a heme iron. Rapid‐mixing and laser photolysis techniques were used to determine the rate constants for carbon monoxide (CO) binding to the ferrous form of the protein (k′CO = 0.23 μM?1 s?1, kCO = 0.050 s?1) and NO binding to the ferric form (k′NO = 1.2 μM–1 s–1, kNO = 73 s?1). Based on both structural and functional similarity to the nitrophorins, we have named the protein nitrobindin and hypothesized that it plays a role in NO transport. However, one of the two human homologs of nitrobindin contains a THAP domain, implying a possible role in apoptosis. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
3,4‐Dihydroxy‐2‐butanone‐4‐phosphate synthase (DHBPS) encoded by ribB gene is one of the first enzymes in riboflavin biosynthesis pathway and catalyzes the conversion of ribulose‐5‐phosphate (Ru5P) to 3,4‐dihydroxy‐2‐butanone‐4‐phosphate and formate. DHBPS is an attractive target for developing anti‐bacterial drugs as this enzyme is essential for pathogens, but absent in humans. The recombinant DHBPS enzyme of Salmonella requires magnesium ion for its activity and catalyzes the formation of 3,4‐dihydroxy‐2‐butanone‐4‐phosphate from Ru5P at a rate of 199 nmol min?1 mg?1 with Km value of 116 μM at 37°C. Further, we have determined the crystal structures of Salmonella DHBPS in complex with sulfate, Ru5P and sulfate‐zinc ion at a resolution of 2.80, 2.52, and 1.86 Å, respectively. Analysis of these crystal structures reveals that the acidic loop (residues 34–39) responsible for the acid‐base catalysis is disordered in the absence of substrate or metal ion at the active site. Upon binding either substrate or sulfate and metal ions, the acidic loop becomes stabilized, adopts a closed conformation and interacts with the substrate. Our structure for the first time reveals that binding of substrate Ru5P alone is sufficient for the stabilization of the acidic active site loop into a closed conformation. In addition, the Glu38 residue from the acidic active site loop undergoes a conformational change upon Ru5P binding, which helps in positioning the second metal ion that stabilizes the Ru5P and the reaction intermediates. This is the first structural report of DHBPS in complex with either substrate or metal ion from any eubacteria. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The major bovine whey proteins, α‐lactalbumin (α‐LA) and β‐lactoglobulin (β‐LG), exhibit breed‐specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA‐based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non‐synonymous nucleotide exchange were identified. Furthermore, two known α‐LA variants (A and B) and four known β‐LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri‐)alpine cattle breeds.  相似文献   

19.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
G‐protein coupled receptors (GPCRs) are transmembrane signaling molecules, with a majority of them performing important physiological roles. β2‐Adrenergic receptor (β2‐AR) is a well‐studied GPCRs that mediates natural responses to the hormones adrenaline and noradrenaline. Analysis of the ligand‐binding region of β2‐AR using the recently solved high‐resolution crystal structures revealed a number of highly conserved amino acids that might be involved in ligand binding. However, detailed structure‐function studies on some of these residues have not been performed, and their role in ligand binding remains to be elucidated. In this study, we have investigated the structural and functional role of a highly conserved residue valine 114, in hamster β2‐AR by site‐directed mutagenesis. We replaced V114 in hamster β2‐AR with a number of amino acid residues carrying different functional groups. In addition to the complementary substitutions V114I and V114L, the V114C and V114E mutants also showed significant ligand binding and agonist dependent G‐protein activation. However, the V114G, V114T, V114S, and V114W mutants failed to bind ligand in a specific manner. Molecular modeling studies were conducted to interpret these results in structural terms. We propose that the replacement of V114 influences not only the interaction of the ethanolamine side‐chains but also the aryl‐ring of the ligands tested. Results from this study show that the size and orientation of the hydrophobic residue at position V114 in β2‐AR affect binding of both agonists and antagonists, but it does not influence the receptor expression or folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号