首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takamune N  Hamada H  Misumi S  Shoji S 《FEBS letters》2002,523(1-3):138-142
A 33-kDa protein component of the oxygen-evolving complex in photosystem II is essential for photosynthesis, and it has been believed that mutants with deletion of this 33-kDa protein are not found in higher plants. We report here the first isolation of an Arabidopsis thaliana mutant with a defect in one of the genes for the 33-kDa proteins, psbO, and an intact gene (psbO2). This mutant showed considerable growth retardation, suggesting that there is a functional difference between psbO and psbO2.  相似文献   

2.
Previous experiments have shown that a Synechocystis sp. PCC 6803 mutant (delta psbO) lacking the extrinsic manganese-stabilizing protein (MSP) exhibits impaired, but significant levels of H2O-splitting activity [Burnap, R., & Sherman, L.A. (1991) Biochemistry 30, 440-446]. [14C]DCMU-binding experiments now show that the number and affinity of DCMU-binding sites (normalized to chlorophyll) are equivalent in delta psbO and the wild type, suggesting equal concentrations of assembled reaction centers. A similar conclusion is reached on the basis of measurements of PSII electron transport (DPC-supported DCPIP reduction) by mutant and wild-type thylakoids. The pattern of flash O2 yield by delta psbO cells measured with a bare platinum electrode exhibits a period four oscillation (with a maximum on the third flash), indicating that the H2O-splitting enzyme in delta psbO retains the basic mechanistic features found in normal cells. However, the amplitude of these signals is smaller and more highly damped than those obtained from wild-type cells, suggesting the absence of MSP results in a higher miss probability and/or a reduction in the number of centers competent in oxygen evolution. Analysis of the rise kinetics of the ampermeric signal on the bare platinum electrode indicates that the S3-[S4]-S0 transition is retarded by at least a factor of 5 in the mutant. Thermoluminescence emission peak temperatures indicate that the S2QA-, S2QB-, and S3QB-charge pairs are significantly more stable with respect to recombination in the mutant. The intensities of the thermoluminescence emissions are also significantly reduced in the mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The psbC gene encodes the intrinsic chlorophyll protein CP 43, a component of photosystem II in higher plants, green algae, and cyanobacteria. Oligonucleotide-directed mutagenesis was used to introduce mutations into the portion of psbC that encodes the large extrinsic loop E of CP 43 in the cyanobacterium Synechocystis 6803. Three mutations, E293Q, E339Q, and E352Q, each produced a strain with impaired photosystem II activity. The E293Q mutant strain grew photoautotrophically at rates comparable to the control strain. Immunological analyses of several PS II components indicated that this mutant accumulated normal quantities of PS II proteins. However, this mutant evolved oxygen to only 56% of control rates at saturating light intensities. Measurements of total variable fluorescence yield indicated that this mutant assembled approximately 60% of the fully functional PS II centers found in the control strain. The E339Q mutant grew photoautotrophically at a severely reduced rate. Both immunological analysis and variable fluorescence yield experiments indicated that E339Q assembled a normal complement of PS II centers. However, this mutant was capable of evolving oxygen to only 20% of control rates. Variable fluorescence yield experiments demonstrated that this mutant was inefficient at using water as an electron donor. Both E293Q and E339Q strains exhibited an increased (approximately 2-fold) sensitivity to photoinactivation. The E352Q mutant was the most severely affected. This mutant failed to grow photoautotrophically and exhibited essentially no capacity for oxygen evolution. Measurements of total variable fluorescence yield indicated that this mutant assembled no functional PS II centers. Immunological analysis of isolated thylakoid membranes from E352Q revealed a complete absence of CP 43 and reduced levels of both the D1 and manganese-stabilizing proteins. These results suggest that the mutations E293Q and E339Q each produce a defect associated with the oxygen-evolving complex of photosystem II. The E352Q mutation appears to affect the stability of the PS II complex. This is the first report showing that alteration of negatively charged residues in the CP 43 large extrinsic loop results in mutations affecting PS II assembly/function.  相似文献   

4.
M Qian  L Dao  R J Debus  R L Burnap 《Biochemistry》1999,38(19):6070-6081
Mutations D1-D59N and D1-D61E in the putative Ca2+-binding lumenal interhelical a-b loop of the photosystem II (PSII) D1 protein [Chu, H. A., Nguyen, A. P., and Debus (1995), Biochemistry 34, 5839-5858] were further characterized in terms of S-state cycling and photoactivation. Bare platinum electrode measurements of centrifugally deposited O2-evolving membranes isolated from the a-b loop mutants demonstrated a retarded appearance of O2 following single turnover flashes, although not to the extent of retardation seen in the Deltapsb0 mutant, which lacks the extrinsic manganese-stabilizing protein (MSP). Double flash measurements indicate that retarded O2 release in mutants coincides with a decrease in overall PSII turnover during the S3-[S4]-S0 transition. S2 and S3 decay measurements in the isolated membranes indicate that D1-D59N and D1-D61E have faster decays of these higher S-states in contrast to slowed decays in the Deltapsb0 mutant. Measurements of the flash interval dependence of photoactivation indicate that intermediates of photoactivation [light-dependent assembly of the (Mn)4 complex] are highly destabilized in the a-b loop mutants compared to both DeltapsbO and the wild-type: flash intervals of greater than 2 s result in the nearly complete decay of unstable photointermediate(s) in the D1-D59N and D1-D61E samples, whereas a similar loss does not occur until intervals even greater than 10 s in the DeltapsbO and wild-type samples. These results are consistent with a role for the residues D1-D59 and D1-D61 in modulating the redox properties of the higher S-states and, also, possibly in the binding the calcium ion involved in photoactivation.  相似文献   

5.
Kufryk GI  Vermaas WF 《Biochemistry》2001,40(31):9247-9255
Mutation of Glu69 to Gln in the D2 protein of photosystem II is known to lead to a loss of photoautotrophic growth in Synechocystis sp. PCC 6803. However, second-site mutants (pseudorevertants) with restored photoautotrophic growth but still maintaining the E69Q mutation in D2 are easily obtained. Using a genomic mapping technique involving functional complementation, the secondary mutation was mapped to slr0286 in two independent mutants. The mutations in Slr0286 were R42M or R394H. To study the function of Slr0286, mutants of E69Q and of the wild-type strain were made that lacked slr0286. Deletion of slr0286 did not affect photoautotrophic capacity in wild type but led to a marked decrease in the apparent affinity of Ca(2+) to its binding site at the water-splitting system of photosystem II and to a reduced heat tolerance of the oxygen-evolving system, particularly in E69Q. Moreover, a small increase in the half-time for photoactivation of the oxygen-evolving complex of photosystem II for both wild type and the E69Q mutant was observed in the absence of Slr0286. The accumulation of photosystem II reaction centers, dark stability of the oxygen-evolving apparatus, stability of oxygen evolution, and the kinetics of charge recombination between Q(A)(-) and the donor side were not affected by deletion of slr0286. Slr0286 lacks clear functional motifs, and no homologues are apparent in other organisms, even not in other cyanobacteria. In any case, Slr0286 appears to help the functional assembly and stability of the water-splitting system of photosystem II.  相似文献   

6.
Using a var2-2 mutant of Arabidopsis thaliana, which lacks a homologue of the zinc-metalloprotease, FtsH, we demonstrate that this protease is required for the efficient turnover of the D1 polypeptide of photosystem II and protection against photoinhibition in vivo. We show that var2-2 leaves are much more susceptible to light-induced photosystem II photoinhibition than wild-type leaves. Furthermore, the rate of photosystem II photoinhibition in untreated var2-2 leaves is equivalent to that of var2-2 and wild-type leaves, which have been treated with lincomycin, an inhibitor of the photosystem II repair cycle at the level of D1 synthesis. This is in contrast to untreated wild-type leaves, which show a much slower rate of photosystem II photoinhibition due to an efficient photosystem II repair cycle. The recovery of var2-2 leaves from photosystem II photoinhibition is also impaired relative to wild-type. Using Western blot analysis in the presence of lincomycin we show that the D1 polypeptide remains stable in leaves of the var2-2 mutant under photoinhibitory conditions that lead to D1 degradation in wild-type leaves and that the abundance of DegP2 is not affected by the var2-2 mutation. We conclude, therefore, that the Var2 FtsH homologue is required for the cleavage of the D1 polypeptide in vivo. In addition, we identify a conserved lumenal domain in Var2 that is unique to FtsH homologues from oxygenic phototrophs.  相似文献   

7.
Cytochrome (cyt) b559 has been proposed to play an important role in the cyclic electron flow processes that protect photosystem II (PSII) from light-induced damage during photoinhibitory conditions. However, the exact role(s) of cyt b559 in the cyclic electron transfer pathway(s) in PSII remains unclear. To study the exact role(s) of cyt b559, we have constructed a series of site-directed mutants, each carrying a single amino acid substitution of one of the heme axial-ligands, in the cyanobacterium Synechocystis sp. PCC6803. In these mutants, His-22 of the alpha or the beta subunit of cyt b559 was replaced with either Met, Glu, Tyr, Lys, Arg, Cys or Gln. On the basis of oxygen-evolution and chlorophyll a fluorescence measurements, we found that, among all mutants that were constructed, only the H22Kalpha mutant grew photoautotrophically, and accumulated stable PSII reaction centers ( approximately 81% compared to wild-type cells). In addition, we isolated one pseudorevertant of the H22Ybeta mutant that regained the ability to grow photoautotrophically and to assemble stable PSII reaction centers ( approximately 79% compared to wild-type cells). On the basis of 77 K fluorescence emission measurements, we found that energy transfer from the phycobilisomes to PSII reaction centers was uncoupled in those cyt b559 mutants that assembled little or no stable PSII. Furthermore, on the basis of immunoblot analyses, we found that in thylakoid membranes of cyt b559 mutants that assembled little or no PSII, the amounts of the D1, D2, cyt b559alpha and beta polypeptides were very low or undetectable but their CP47 and PsaC polypeptides were accumulated to the wild-type level. We also found that the amounts of cyt b559beta polypeptide were significantly increased (larger than two folds) in thylakoid membranes of cyt b559 H22YbetaPS+ mutant cells. We suspected that the increase in the amounts of cyt b559 H22YbetaPS+ mutant polypeptides in thylakoid membranes might facilitate the assembly of functional PSII in cyt b559 H22YbetaPS+ mutant cells. Moreover, we found that isolated His-tagged PSII particles from H22Kalpha mutant cells gave rise to redox-induced optical absorption difference spectra of cyt b559. Therefore, our results concluded that significant fractions of H22Kalpha mutant PSII particles retained the heme of cyt b559. Finally, this work is the first report of cyt b559 mutants having substitutions of an axial heme-ligands that retain the ability to grow photoautotrophically and to assemble stable PSII reaction centers. These two cyt b559 mutants (H22Kalpha and H22YbetaPS+) and their PSII reaction centers will be very suitable for further biophysical and biochemical studies of the functional role(s) of cyt b559 in PSII.  相似文献   

8.
The role of D2-Tyr160 (Y(D)), a photooxidizable residue in the D2 reaction center polypeptide of photosystem II (PSII), was investigated in both wild type and a mutant strain (D2-Tyr160Phe) in which phenylalanine replaces Y(D) in the cyanobacterium Synechocystis sp. (strain PCC 6803). Y(D) is the symmetry-related tyrosine that is homologous to the essential photoactive Tyr161(Y(Z)) of the D1 polypeptide of PSII. We compared the flash-induced yield of O(2) in intact, functional PSII centers from both wild-type and mutant PSII core complexes. The yield of O(2) in the intact holo-enzyme was found to be identical in the mutant and wild-type PSII cores using long (saturating) pulses or continuous illumination, but was observed to be appreciably reduced in the mutant using short (nonsaturating) light pulses (<50 ms). We also compared the rates of the first two kinetically resolved steps of photoactivation. Photoactivation is the assembly process for binding of the inorganic cofactors to the apo-water oxidation/PSII complex (apo-WOC-PSII) and their light-induced photooxidation to form the functional Mn(4)Ca(1)Cl(x)() core required for O(2) evolution. We show that the D2-Tyr160Phe mutant cores can assemble a functional WOC from the free inorganic cofactors, but at a much slower rate and with reduced quantum efficiency vs wild-type PSII cores. Both of these observations imply that the presence of Y(D)(*) leads to a more efficient photooxidation of the Mn cluster relative to deactivation (reductive processes). One possible explanation for this behavior is that the phenolic proton on Y(D) is retained within the reaction center following Y(D) oxidation. The positive charge, likely shared by D2-His189 and other residues, raises the reduction potential of P(680)(+)/P(680), thereby increasing the driving force for the oxidation of Mn(4)Y(Z). There is, therefore, a competitive advantage to organisms that retain the Y(D) residue, possibly explaining its retention in all sequences of psbD (encoding the D2 polypeptide) known to date. We also find that the sequence of metal binding steps during assembly of apo-WOC-PSII centers in cyanobacteria cores differs from that in higher plants. This is seen by a reduced calcium affinity at its effector site and reduced competition for binding to the Mn(II) site, resulting in acceleration of the initial lagtime by Ca(2+), in contrast to retardation in spinach. Ca(2+) binding to its effector site promotes the stability of the photointermediates (IM1 and above) by suppressing unproductive decay.  相似文献   

9.
Manganese-stabilizing protein of photosystem II, an intrinsically disordered polypeptide, contains a high ratio of charged to hydrophobic amino acid residues. Arg151 and Arg161 are conserved in all known MSP sequences. To examine the role of these basic residues in MSP structure and function, three mutants of spinach MSP, R151G, R151D, and R161G, were produced. Here, we present evidence that replacement of Arg151 or Arg161 yields proteins that have lower PSII binding affinity, and are functionally deficient even though about 2 mol of mutant MSP/mol PSII can be rebound to MSP depleted PSII membranes. R161G reconstitutes O(2) evolution activity to 40% of the control, while R151G and R151D reconstitute only 20% of the control activity. Spectroscopic and biochemical techniques fail to detect significant changes in solution structure. More extensive O(2) evolution assays revealed that the Mn cluster is stable in samples reconstituted with each mutated MSP, and that all three Arg mutants have the same ability to retain Ca(2+) as the wild-type protein. Activity assays exploring the effect of these mutations on retention of Cl(-), however, showed that the R151G, R151D, and R161G MSPs are defective in Cl(-) binding to the OEC. The mutants have Cl(-) K(M) values that are about four (R161G) or six times (R151G and R151D) higher than the value for the wild-type protein. The results reported here suggest that conserved positive charges on the manganese-stabilizing protein play a role in proper functional assembly of the protein into PSII, and, consequently, in retention of Cl(-) by the O(2)-evolving complex.  相似文献   

10.
The Synechocystis sp. strain PCC 6803, which has a T192H mutation in the D2 protein of photosystem II, is an obligate photoheterotroph due to the lack of assembled photosystem II complexes. A secondary mutant, Rg2, has been selected that retains the T192H mutation but is able to grow photoautotrophically. Restoration of photoautotrophic growth in this mutant was caused by early termination at position 294 in the Slr2013 protein. The T192H mutant with truncated Slr2013 forms fully functional photosystem II reaction centers that differ from wild-type reaction centers only by a 30% higher rate of charge recombination between the primary electron acceptor, QA-, and the donor side and by a reduced stability of the oxidized form of the redox-active Tyr residue, YD, in the D2 protein. This suggests that the T192H mutation itself did not directly affect electron transfer components, but rather affected protein folding and/or stable assembly of photosystem II, and that Slr2013 is involved in the folding of the D2 protein and the assembly of photosystem II. Besides participation in photosystem II assembly, Slr2013 plays a critical role in the cell, because the corresponding gene cannot be deleted completely under conditions in which photosystem II is dispensable. Truncation of Slr2013 by itself does not affect photosynthetic activity of Synechocystis sp. strain PCC 6803. Slr2013 is annotated in CyanoBase as a hypothetical protein and shares a DUF58 family signature with other hypothetical proteins of unknown function. Genes for close homologues of Slr2013 are found in other cyanobacteria (Nostoc punctiforme, Anabaena sp. strain PCC 7120, and Thermosynechococcus elongatus BP-1), and apparent orthologs of this protein are found in Eubacteria and Archaea, but not in eukaryotes. We suggest that Slr2013 regulates functional assembly of photosystem II and has at least one other important function in the cell.  相似文献   

11.
G H Noren  B A Barry 《Biochemistry》1992,31(13):3335-3342
The currently accepted model for the location of the redox-active tyrosines, D and Z, in photosystem II suggests that they are symmetrically located on the D1 and D2 polypeptides, which are believed to form the heterodimer core of the reaction center. Z, the electron conduit from the manganese catalytic site to the primary chlorophyll donor, has been identified with tyrosine-161 of D1. The YF161D1 mutant of Synechocystis 6803 [Debus, R. J., Barry, B. A., Sithole, I., Babcock, G. T., & McIntosh, L. (1988b) Biochemistry 27, 9071-9074; Metz, J. G., Nixon, P. J., Rogner, M., Brudvig, G. W., & Diner, B. A. (1989) Biochemistry 28, 6960-6969], in which this tyrosine has been changed to a phenylalanine, should have no light-induced EPR (electron paramagnetic resonance) signal from a tyrosine radical. This negative result has indeed been obtained in analysis of one of two independently constructed mutants through the use of a non-oxygen-evolving core preparation (Metz et al., 1989). Here, we present an analysis of a YF161D1 mutant through the use of a photosystem II purification procedure that gives oxygen-evolving particles from wild-type Synechocystis cultures. In our mutant preparation, a light-induced EPR signal from a photosystem II radical is observed under conditions in which, in a wild-type preparation, we can accumulate an EPR signal from Z+. This EPR signal has a different lineshape from that of the Z+ tyrosine radical, and spin quantitation shows that this radical can be produced in up to 60% of the mutant reaction centers. The EPR lineshape of this radical suggests that photosystem II reaction centers of the YF161D1 mutant contain a redox-active amino acid.  相似文献   

12.
13.
14.
Li ZL  Burnap RL 《Biochemistry》2001,40(34):10350-10359
Mutations D1-R64E, D1-R64Q, and D1-R64V in the putative calcium-binding lumenal interhelical a-b loop of the photosystem II (PSII) D1 protein were characterized in terms of impact on growth, extrinsic protein binding, photoactivation, and properties of the H(2)O-oxidation complex. The D1-R64E charge reversal mutation greatly weakened the binding of the extrinsic manganese-stabilizing protein (MSP) and, to a considerably lesser extent, weakened the binding of cytochrome c(550) (c550). Both D1-R64Q and D1-R64E exhibited an increased requirement for Ca(2+) in the cell growth medium. Bare platinum electrode measurements of O(2)-evolving membranes showed a retarded appearance of O(2) following single turn-over flashes, especially in the case of the D1-R64E mutant. The D1-R64E mutant also had a pronounced tendency to lose O(2) evolution activity in the dark and exhibited an increased relative quantum yield of photoactivation, which are characteristics shared by mutants that lack extrinsic proteins. S(2) and S(3) decay measurements in the isolated membranes indicate that D1-R64E and D1-R64Q have faster decays of these higher S-states as compared to the wild-type. However, fluorescence decay in the presence of DCMU, which monitors primarily Q(A)(-) charge recombination with PSII donors, showed somewhat slower decays. Taken together, the fluorescence and S-state decay indicate that the midpoint of either Q(B)(-) has been modified to be more negative in the mutants or that a recombination path presumably involving either Q(B)(-) or Y(D) has become kinetically more accessible.  相似文献   

15.
The 33-kDa manganese-stabilizing protein stabilizes the manganese cluster in the oxygen-evolving complex. There has been, however, a considerable amount of controversy concerning the stoichiometry of this photosystem II (PS II) component. In this paper, we have verified the extinction coefficient of the manganese-stabilizing protein by amino acid analysis, determined the manganese content of oxygen-evolving photosystem II membranes and reaction center complex using inductively coupled plasma spectrometry, and determined immunologically the amount of the manganese-stabilizing protein associated with photosystem II. Oxygen-evolving photosystem II membranes and reaction center complex preparations contained 258 +/- 11 and 67 +/- 3 chlorophyll, respectively, per tetranuclear manganese cluster. Immunoquantification of the manganese-stabilizing protein using mouse polyclonal antibodies on "Western blots" demonstrated the presence of 2.1 +/- 0.2 and 2.0 +/- 0.3 molecules of the manganese-stabilizing protein/tetranuclear manganese cluster in oxygen-evolving PS II membranes and highly purified PS II reaction center complex, respectively. Since the manganese-stabilizing protein co-migrated with the D2 protein in our electrophoretic system, accurate immunoquantification required the inclusion of CaCl2-washed PS II membrane proteins or reaction center complex proteins in the manganese-stabilizing protein standards to compensate for the possible masking effect of the D2 protein on the binding of the manganese-stabilizing protein to Immobilon-P membranes. Failure to include these additional protein components in the manganese-stabilizing protein standards leads to a marked underestimation of the amount of the manganese-stabilizing protein associated with these photosystem II preparations.  相似文献   

16.
In green plant-like photosynthesis, oxygen evolution is catalyzed by a thylakoid membrane-bound protein complex, photosystem II. Cytochrome b559, a protein component of the reaction center of this complex, is absent in a genetically engineered mutant of the cyanobacterium, Synechocystis 6803 [Pakrasi, H.B., Williams, J.G.K., and Arntzen, C.J. (1988). EMBO J. 7, 325-332]. In this mutant, the genes psbE and psbF, encoding cytochrome b559, were deleted by targeted mutagenesis. Two other protein components, D1 and D2 of the photosystem II reaction center, are also absent in this mutant. However, two chlorophyll-binding proteins, CP47 and CP43, as well as a manganese-stabilizing extrinsic protein component of photosystem II are stably assembled in the thylakoids of this mutant. Thus, this deletion mutation destabilizes the reaction center of photosystem II only. The mutant also lacks a fluorescence maximum peak at 695 nm (at 77 K) even though the CP47 protein, considered to be the origin of this fluorescence peak, is present in this mutant. We propose that the fluorescence at 695 nm originates from an interaction between the reaction center of photosystem II and CP47. The deletion mutant shows the absence of variable fluorescence at room temperature, indicating that its photosystem II complex is photochemically inactive. Also, photoreduction of QA, the primary acceptor quinone in photosystem II, could not be detected in the mutant. We conclude that cytochrome b559 plays at least an essential structural role in the reaction center of photosystem II.  相似文献   

17.
Interfering RNA was used to suppress the expression of two genes that encode the manganese-stabilizing protein of photosystem II in Arabidopsis thaliana, MSP-1 (encoded by psbO-1, At5g66570), and MSP-2 (encoded by psbO-2, At3g50820). A phenotypic series of transgenic plants was recovered that expressed high, intermediate, and low amounts of these two manganese-stabilizing proteins. Chlorophyll fluorescence induction and decay analyses were performed. Decreasing amounts of expressed protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(v)/F(m)) in both the absence and the presence of dichloromethylurea. This result indicated that the amount of functional photosystem II reaction centers was compromised in the plants that exhibited intermediate and low amounts of the manganese-stabilizing proteins. An analysis of the decay of the variable fluorescence in the presence of dichlorophenyldimethylurea indicated that charge recombination between Q ((A-)) and the S(2) state of the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the manganese stabilizing proteins. This may have indicated a stabilization of the S(2) state in the absence of the extrinsic component. Immunological analysis of the photosystem II protein complement indicated that significant losses of the CP47, CP43, and D1 proteins occurred upon the loss of the manganese-stabilizing proteins. This indicated that these extrinsic proteins were required for photosystem II core assembly/stability. Additionally, although the quantity of the 24-kDa extrinsic protein was only modestly affected by the loss of the manganese-stabilizing proteins, the 17-kDa extrinsic protein dramatically decreased. The control proteins ribulose bisphosphate carboxylase and cytochrome f were not affected by the loss of the manganese-stabilizing proteins; the photosystem I PsaB protein, however, was significantly reduced in the low expressing transgenic plants. Finally, it was determined that the transgenic plants that expressed low amounts of the manganese-stabilizing proteins could not grow photoautotrophically.  相似文献   

18.
We have found that copper(II) ions at about equimolar Cu2+/photosystem II (PS II) reaction center proportions stimulate oxygen evolution nearly twofold. This high affinity Cu-binding site is different from the binding sites of Mn and Ca ions. The analysis of the Cu2+ content in PS II preparations isolated from wild-type tobacco and a tobacco mutant deficient in light-harvesting complex suggests that Cu2+ may be a native component of PS II and may take part in the oxygen evolution process. At higher concentrations, Cu2+ ions inhibit oxygen evolution and quench fluorescence.  相似文献   

19.
C Putnam-Evans  T M Bricker 《Biochemistry》1992,31(46):11482-11488
The psbB gene encodes the intrinsic chlorophyll-a binding protein CPa-1 (CP-47), a component of photosystem II in higher plants, algae, and cyanobacteria. Oligonucleotide-directed mutagenesis was used to introduce mutations into a segment of the psbB gene encoding the large extrinsic loop region of CPa-1 in the cyanobacterium Synechocystis sp. PCC 6803. Altered psbB genes were introduced into a mutant recipient strain (DEL-1) of Synechocystis in which the genomic psbB gene had been partially deleted. Initial target sites for mutagenesis were absolutely conserved basic residue pairs occurring within the large extrinsic loop. One mutation, RR384385GG, produced a strain with impaired photosystem II activity. This strain exhibited growth characteristics comparable to controls. However, at saturating light intensities this mutant strain evolved oxygen at only 50% of the rate of the control strains. Quantum yield measurements at low light intensities indicated that the mutant had 30% fewer fully functional photosystem II centers than do control strains of Synechocystis. Immunological analysis of a number of photosystem II protein components indicated that the mutant accumulates normal quantities of photosystem II proteins and that the ratio of photosystem II to photosystem I proteins is comparable to that found in control strains. Upon exposure to high light intensities the mutant cells exhibited a markedly increased susceptibility to photoinactivation. However, Tris-treated thylakoid membranes from both the mutant and wild-type exhibited comparable rates of photoinactivation. Thylakoid membranes isolated from RR384385GG exhibited only 15% of the H2O to 2,6-dichlorophenolindophenol electron transport rate observed in wild-type strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The polypeptide composition and spectral properties of three photosystem II (PSII) deficient mutants of the cyanobacterium Synechocystis 6803 have been determined. The levels of the 43 and 47 kilodalton chlorophyll-binding proteins and the reaction center component D2 are affected differently in each mutant; the 33 kD polypeptide of the oxygen-evolving complex is found at wild-type levels in all three. The 43 and 47 kilodalton proteins are implicated as important elements in the assembly and/or stability of the PSII reaction center, although the loss of one of these polypeptides does not lead to the loss of all PSII proteins. Low temperature fluorescence emission spectra of wild-type cells reveal chlorophyll-attributable peaks at 687 (PSII), 696 (PSII), and 725 (photosystem I) nanometers. All three mutants retain the 725 nanometer fluorescence but lack the 696 nanometer peak. This suggests that the latter fluorescence arises from PSII reaction center chlorophyll or results from interactions among functional PSII components in vivo. Cells that contain the 43 kilodalton and lack the 47 kilodalton protein, retain the 687 fluorescence; furthermore, in as much as this fluorescence is absent from cells without the 43 kilodalton protein, the 687 nanometer peak is judged to emanate from the 43 kilodalton chlorophyll-protein. A new peak, probably previously obscured, is revealed at 691 nanometers in cells that retain the 47 kilodalton protein but lack the 43 kilodalton polypeptide, suggesting that emission near 691 nanometers can be attributed to the 47 kilodalton polypeptide. Membrane-bound phycobilisomes are retained in these cells as is coupled-energy transfer between phycocyanin and allophycocyanin. Energy transfer to photosystem I by way of phycocyanin excitation proceeds as in wild-type cells despite the absence of certain PSII components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号