首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
The neuronal NO synthase (nNOS) flavin domain, which has similar redox properties to those of NADPH-cytochrome P450 reductase (P450R), contains binding sites for calmodulin, FAD, FMN, and NADPH. The aim of this study is to elucidate the mechanism of activation of the flavin domain by calcium/calmodulin (Ca(2+)/CaM). In this study, we used the recombinant nNOS flavin domains, which include or delete the calmodulin (CaM)-binding site. The air-stable semiquinone of the nNOS flavin domains showed similar redox properties to the corresponding FAD-FMNH(&z.ccirf;) of P450R. In the absence or presence of Ca(2+)/CaM, the rates of reduction of an FAD-FMN pair by NADPH have been investigated at different wavelengths, 457, 504 and 590 nm by using a stopped-flow technique and a rapid scan spectrophotometry. The reduction of the oxidized enzyme (FAD-FMN) by NADPH proceeds by both one-electron equivalent and two-electron equivalent mechanisms, and the formation of semiquinone (increase of absorbance at 590 nm) was significantly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form of the enzyme was also rapidly reduced by NADPH. The results suggest that an intramolecular one-electron transfer between the two flavins is activated by the binding of Ca(2+)/CaM. The F(1)H(2), which is the fully reduced form of the air-stable semiquinone, can donate one electron to the electron acceptor, cytochrome c. The proposed mechanism of activation by Ca(2+)/CaM complex is discussed on the basis of that provided by P450R.  相似文献   

2.
Nitric oxide synthase (NOS) is composed of an oxygenase domain and a reductase domain. The reductase domain has NADPH, FAD, and FMN binding sites. Wild-type nNOS reduced the azo bond of methyl red with a turnover number of approximately 130 min(-1) in the presence of Ca(2+)/calmodulin (CaM) and NADPH under anaerobic conditions. Diphenyleneiodonium chloride (DPI), a flavin/NADPH binding inhibitor, completely inhibited azo reduction. The omission of Ca(2+)/CaM from the reaction system decreased the activity to 5%. The rate of the azo reduction with an FMN-deficient mutant was also 5% that of the wild type. NADPH oxidation rates for the wild-type and mutant enzymes were well coupled with azo reduction. Thus, we suggest that electrons delivered from the FMN of the nNOS enzyme reduce the azo bond of methyl red and that this reductase activity is controlled by Ca(2+)/CaM.  相似文献   

3.
Neuronal nitric-oxide synthase (nNOS) is composed of a heme oxygenase domain and a flavin-bound reductase domain. Ca(2+)/calmodulin (CaM) is essential for interdomain electron transfer during catalysis, whereas the role of the catalytically important cofactor, tetrahydrobiopterin (H4B) remains elusive. The product NO appears to bind to the heme and works as a feedback inhibitor. The present study shows that the Fe(3+)-NO complex is reduced to the Fe(2+)-NO complex by NADPH in the presence of both l-Arg and H4B even in the absence of Ca(2+)/CaM. The complex could not be fully reduced in the absence of H4B under any circumstances. However, dihydrobiopterin and N(G)-hydroxy-l-Arg could be substituted for H4B and l-Arg, respectively. No direct correlation could be found between redox potentials of the nNOS heme and the observed reduction of the Fe(3+)-NO complex. Thus, our data indicate the importance of the pterin binding to the active site structure during the reduction of the NO-heme complex by NADPH during catalytic turnover.  相似文献   

4.
The nitric oxide synthases (NOSs) consist of a flavin-containing reductase domain, linked to a heme-containing oxygenase domain, by a calmodulin (CaM) binding sequence. The flavin-containing reductase domains of the NOS isoforms possess close sequence homology to NADPH-cytochrome P450 reductase (CPR). Additionally, the oxygenase domains catalyze monooxygenation of L-arginine through a cytochrome P450-like cysteine thiolate-liganded heme bound in the active site. With these considerations in mind, we conducted studies in an attempt to gain insight into the intermediates involved in flavoprotein-to-heme electron transfer in the NOSs. Static, steady-state, and stopped-flow kinetic studies indicated that nNOS must be reduced to a more than one-electron-reduced intermediate before efficient electron transfer can occur. Therefore, the possibility exists that the oxygenase domains of the NOS isoforms may receive their electrons from the reductase domains by a mechanism resembling the CPR-P450 interaction. Furthermore, the rate-limiting step in electron transfer appears to be the transfer of electrons from the flavoprotein to the oxygenase domain facilitated by the binding of CaM at increased intracellular Ca(2+) concentrations. Thus, modulation of electron transfer rates appears to be regulated at the level of the flavoprotein domains of the NOS isoforms.  相似文献   

5.
In neuronal nitric-oxide synthase (nNOS), calmodulin (CaM) binding is thought to trigger electron transfer from the reductase domain to the heme domain, which is essential for O(2) activation and NO formation. To elucidate the electron-transfer mechanism, we characterized a series of heterodimers consisting of one full-length nNOS subunit and one oxygenase-domain subunit. The results support an inter-subunit electron-transfer mechanism for the wild type nNOS, in that electrons for catalysis transfer in a Ca(2+)/CaM-dependent way from the reductase domain of one subunit to the heme of the other subunit, as proposed for inducible NOS. This suggests that the two different isoforms form similar dimeric complexes. In a series of heterodimers containing a Ca(2+)/CaM-insensitive mutant (delta40), electrons transferred from the reductase domain to both hemes in a Ca(2+)/CaM-independent way. Thus, in the delta40 mutant electron transfer from the reductase domains to the heme domains can occur via both inter-subunit and intra-subunit mechanisms. However, NO formation activity was exclusively linked to inter-subunit electron transfer and was observed only in the presence of Ca(2+)/CaM. This suggests that the mechanism of activation of nNOS by CaM is not solely dependent on the activation of electron transfer to the nNOS hemes but may involve additional structural factors linked to the catalytic action of the heme domain.  相似文献   

6.
The neuronal and endothelial nitric-oxide synthases (nNOS and eNOS) differ from inducible NOS in their dependence on the intracellular Ca(2+) concentration. Both nNOS and eNOS are activated by the reversible binding of calmodulin (CaM) in the presence of Ca(2+), whereas inducible NOS binds CaM irreversibly. One major divergence in the close sequence similarity between the NOS isoforms is a 40-50-amino acid insert in the middle of the FMN-binding domains of nNOS and eNOS. It has previously been proposed that this insert forms an autoinhibitory domain designed to destabilize CaM binding and increase its Ca(2+) dependence. To examine the importance of the insert we constructed two deletion mutants designed to remove the bulk of it from nNOS. Both mutants (Delta40 and Delta42) retained maximal NO synthesis activity at lower concentrations of free Ca(2+) than the wild type enzyme. They were also found to retain 30% of their activity in the absence of Ca(2+)/CaM, indicating that the insert plays an important role in disabling the enzyme when the physiological Ca(2+) concentration is low. Reduction of nNOS heme by NADPH under rigorous anaerobic conditions was found to occur in the wild type enzyme only in the presence of Ca(2+)/CaM. However, reduction of heme in the Delta40 mutant occurred spontaneously on addition of NADPH in the absence of Ca(2+)/CaM. This suggests that the insert regulates activity by inhibiting electron transfer from FMN to heme in the absence of Ca(2+)/CaM and by destabilizing CaM binding at low Ca(2+) concentrations, consistent with its role as an autoinhibitory domain.  相似文献   

7.
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.  相似文献   

8.
Intersubunit intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation, which serves as the input state for reduction of FMN by electrons from NADPH and flavin adenine dinucleotide (FAD) in the reductase domain. To favor the formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct of rat neuronal NOS (nNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of IET between the FMN and heme domains in the nNOS oxyFMN construct in the presence and absence of added calmodulin (CaM) were directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single-domain heme oxygenase constructs. The IET rate constant in the presence of CaM (262 s(-)(1)) was increased approximately 10-fold compared to that in the absence of CaM (22 s(-)(1)). The effect of CaM on interdomain interactions was further evidenced by electron paramagnetic resonance (EPR) spectra. This work provides the first direct evidence of the CaM control of electron transfer (ET) between FMN and heme domains through facilitation of the FMN/heme interactions in the output state. Therefore, CaM controls IET between heme and FMN domains by a conformational gated mechanism. This is essential in coupling ET in the reductase domain in NOS with NO synthesis in the oxygenase domain.  相似文献   

9.
Neuronal nitric-oxide synthase (nNOS or NOS I) and endothelial NOS (eNOS or NOS III) differ widely in their reductase and nitric oxide (NO) synthesis activities, electron transfer rates, and propensities to form a heme-NO complex during catalysis. We generated chimeras by swapping eNOS and nNOS oxygenase domains to understand the basis for these differences and to identify structural elements that determine their catalytic behaviors. Swapping oxygenase domains did not alter domain-specific catalytic functions (cytochrome c reduction or H(2)O(2)-supported N(omega)-hydroxy-l-arginine oxidation) but markedly affected steady-state NO synthesis and NADPH oxidation compared with native eNOS and nNOS. Stopped-flow analysis showed that reductase domains either maintained (nNOS) or slightly exceeded (eNOS) their native rates of heme reduction in each chimera. Heme reduction rates were found to correlate with the initial rates of NADPH oxidation and heme-NO complex formation, with the percentage of heme-NO complex attained during the steady state, and with NO synthesis activity. Oxygenase domain identity influenced these parameters to a lesser degree. We conclude: 1) Heme reduction rates in nNOS and eNOS are controlled primarily by their reductase domains and are almost independent of oxygenase domain identity. 2) Heme reduction rate is the dominant parameter controlling the kinetics and extent of heme-NO complex formation in both eNOS and nNOS, and thus it determines to what degree heme-NO complex formation influences their steady-state NO synthesis, whereas oxygenase domains provide minor but important influences. 3) General principles that relate heme reduction rate, heme-NO complex formation, and NO synthesis are not specific for nNOS but apply to eNOS as well.  相似文献   

10.
Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca(2+)/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg(1400), and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.  相似文献   

11.
Neuronal nitric-oxide synthase (nNOS) is activated by the Ca(2+)-dependent binding of calmodulin (CaM) to a characteristic polypeptide linker connecting the oxygenase and reductase domains. Calmodulin binding also activates the reductase domain of the enzyme, increasing the rate of reduction of external electron acceptors such as cytochrome c. Several unusual structural features appear to control this activation mechanism, including an autoinhibitory loop, a C-terminal extension, and kinase-dependent phosphorylation sites. Pre-steady state reduction and oxidation time courses for the nNOS reductase domain indicate that CaM binding triggers NADP(+) release, which may exert control over steady-state turnover. In addition, the second order rate constant for cytochrome c reduction in the absence of CaM was found to be highly dependent on the presence of NADPH. It appears that NADPH induces a conformational change in the nNOS reductase domain, restricting access to the FMN by external electron acceptors. CaM binding reverses this effect, causing a 30-fold increase in the second order rate constant. The results show a startling interplay between the two ligands, which both exert control over the conformation of the domain to influence its electron transfer properties. In the full-length enzyme, NADPH binding will probably close the conformational lock in vivo, preventing electron transfer to the oxygenase domain and the resultant stimulation of nitric oxide synthesis.  相似文献   

12.
It has been postulated that a segment (residues 594-645) inserted in the FMN subdomain of human endothelial nitric-oxide synthase (eNOS) plays a crucial role in controlling Ca(2+)-dependent CaM binding for eNOS activity. To investigate its functions, we expressed human eNOS in a baculovirus system with deletion of a 45-residue segment from this region (residues 594-606 and 614-645, designated as Delta45eNOS), and characterized the purified mutant enzyme. In contrast with wild-type eNOS, Delta45eNOS exhibited characteristics resembling inducible NOS (iNOS). It contained an endogenously bound CaM, which was essential in folding and stabilizing this mutant enzyme, and retained 60% of L-citrulline formation in 5 mM EGTA. We also produced four N-terminally truncated reductase domains with or without the 45-residue segment, and either including or excluding the CaM-binding sequence. Basal cytochrome c reductase activity of reductase domains without the 45-residue segment was up to 20 fold greater than that of corresponding insert-containing domains, and higher than CaM-stimulated activity of the wild-type enzyme. A series of mutants with smaller fragment deletion in this region such as Delta594-604, Delta605-612, Delta613-625, Delta626-634, Delta632-639, and Delta640-645 mutants were further characterized. The crude lysate of mutants Delta613-625 and Delta632-639 did not show activity in the presence of Ca(2+)/CaM, while other four mutants had activity comparable to that of WTeNOS. The purified Delta594-604 and Delta605-612 proteins had a 3-5-fold higher affinity for Ca(2+)/CaM, but their L-citrulline forming activity was still 80% dependent upon the addition of Ca(2+)/CaM. Both mutants exhibited a low level of the cytochrome c and ferricyanide reductase activities, which either did not respond to (Delta594-604) or slightly enhanced by (Delta605-612) the exogenous CaM. In contrast, activities of Delta626-634 and Delta640-645 like those of WTeNOS were largely Ca(2+)/CaM-dependent. Thus, our findings indicate that the N-terminal half of the 594-645 segment containing residues 594-612 plays a significant role in regulating Ca(2+)/CaM binding.  相似文献   

13.
Control of nitric oxide (NO) synthesis in the constitutive nitric-oxide synthases (NOS) by calcium/calmodulin is exerted through the regulation of electron transfer from NADPH through the reductase domains. This process has been shown previously to involve the calmodulin binding site, the autoinhibitory insertion in the FMN binding domain, and the C-terminal tail. Smaller sequence elements also appear to correlate with control. Although some of these elements appear well positioned to function in control, they are poorly conserved; their role in control is neither well established nor defined by available information. In this study mutations have been induced in the small insertion of the hinge subdomain, which has been shown recently to form a beta hairpin in structural studies of the neuronal NOS reductase domains adjacent to the calmodulin site and the autoinhibitory element. Modification of the small insertion in neuronal NOS tends to increase cytochrome c reduction but not NO synthetic activity; some modifications or deletions in the corresponding region in endothelial NOS modestly increase activity under some conditions. Unexpectedly, some minor changes in the sequence introduce a loss in the content of heme relative to flavin cofactors. Taken together, these results suggest that the small insertion protects the calmodulin binding site and that it may be a modulator of NOS activity.  相似文献   

14.
The nitric-oxide synthases (NOSs) are comprised of an oxygenase domain and a reductase domain bisected by a calmodulin (CaM) binding region. The NOS reductase domains share approximately 60% sequence similarity with the cytochrome P450 oxidoreductase (CYPOR), which transfers electrons to microsomal cytochromes P450. The crystal structure of the neuronal NOS (nNOS) connecting/FAD binding subdomains reveals that the structure of the nNOS-connecting subdomain diverges from that of CYPOR, implying different alignments of the flavins in the two enzymes. We created a series of chimeric enzymes between nNOS and CYPOR in which the FMN binding and the connecting/FAD binding subdomains are swapped. A chimera consisting of the nNOS heme domain and FMN binding subdomain and the CYPOR FAD binding subdomain catalyzed significantly increased rates of cytochrome c reduction in the absence of CaM and of NO synthesis in its presence. Cytochrome c reduction by this chimera was inhibited by CaM. Other chimeras consisting of the nNOS heme domain, the CYPOR FMN binding subdomain, and the nNOS FAD binding subdomain with or without the tail region also catalyzed cytochrome c reduction, were not modulated by CaM, and could not transfer electrons into the heme domain. A chimera consisting of the heme domain of nNOS and the reductase domain of CYPOR reduced cytochrome c and ferricyanide at rates 2-fold higher than that of native CYPOR, suggesting that the presence of the heme domain affected electron transfer through the reductase domain. These data demonstrate that the FMN subdomain of CYPOR cannot effectively substitute for that of nNOS, whereas the FAD subdomains are interchangeable. The differences among these chimeras most likely result from alterations in the alignment of the flavins within each enzyme construct.  相似文献   

15.
Nitric-oxide synthase (NOS) is composed of an oxygenase domain having cytochrome P450-type heme active site and a reductase domain having FAD- and FMN-binding sites. To investigate the route of electron transfer from the reductase domain to the heme, we generated mutants at Lys(423) in the heme proximal site of neuronal NOS and examined the catalytic activities, electron transfer rates, and NADPH oxidation rates. A K423E mutant showed no NO formation activity (<0.1 nmol/min/nmol heme), in contrast with that (72 nmol/min/nmol heme) of the wild type enzyme. The electron transfer rate (0.01 min(-1)) of the K423E on addition of excess NADPH was much slower than that (>10 min(-1)) of the wild type enzyme. From the crystal structure of the oxygenase domain of endothelial NOS, Lys(423) of neuronal NOS is likely to interact with Trp(409) which lies in contact with the heme plane and with Cys(415), the axial ligand. It is also exposed to solvent and lies in the region where the heme is closest to the protein surface. Thus, it seems likely that ionic interactions between Lys(423) and the reductase domain may help to form a flavin to heme electron transfer pathway.  相似文献   

16.
Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca2+-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis.  相似文献   

17.
Caveolin is known to down-regulate both neuronal (nNOS) and endothelial nitric-oxide synthase (eNOS). In the present study, direct interactions of recombinant caveolin-1 with both the oxygenase and reductase domains of nNOS were demonstrated using in vitro binding assays. To elucidate the mechanism of nNOS regulation by caveolin, we examined the effects of a caveolin-1 scaffolding domain peptide (CaV1p1; residues (82-101)) on the catalytic activities of wild-type and mutant nNOSs. CaV1p1 inhibited NO formation activity and NADPH oxidation of wild-type nNOS in a dose-dependent manner with an IC(50) value of 1.8 microM. Mutations of Phe(584) and Trp(587) within a caveolin binding consensus motif of the oxygenase domain did not result in the loss of CaV1p1 inhibition, indicating that an alternate region of nNOS mediates inhibition by caveolin. The addition of CaV1p1 also inhibited more than 90% of the cytochrome c reductase activity in the isolated reductase domain with or without the calmodulin (CaM) binding site, whereas CaV1p1 inhibited ferricyanide reductase activity by only 50%. These results suggest that there are significant differences in the mechanism of inhibition by caveolin for nNOS as compared with those previously reported for eNOS. Further analysis of the interaction through the use of several reductase domain deletion mutants revealed that the FMN domain was essential for successful interaction between caveolin-1 and nNOS reductase. We also examined the effects of CaV1p1 on an autoinhibitory domain deletion mutant (Delta40) and a C-terminal truncation mutant (DeltaC33), both of which are able to form NO in the absence of CaM, unlike the wild-type enzyme. Interestingly, CaV1p1 inhibited CaM-dependent, but not CaM-independent, NO formation activities of both Delta40 and DeltaC33, suggesting that CaV1p1 inhibits interdomain electron transfer induced by CaM from the reductase domain to the oxygenase domain.  相似文献   

18.
The object of this study was to clarify the mechanism of electron transfer in the human endothelial nitric oxide synthase (eNOS) reductase domain using recombinant eNOS reductase domains; the FAD/NADPH domain containing FAD- and NADPH-binding sites and the FAD/FMN domain containing FAD/NADPH-, FMN-, and a calmodulin-binding sites. In the presence of molecular oxygen or menadione, the reduced FAD/NADPH domain is oxidized via the neutral (blue) semiquinone (FADH(*)), which has a characteristic absorption peak at 520 nm. The FAD/NADPH and FAD/FMN domains have high activity for ferricyanide, but the FAD/FMN domain has low activity for cytochrome c. In the presence or absence of calcium/calmodulin (Ca(2+)/CaM), reduction of the oxidized flavins (FAD-FMN) and air-stable semiquinone (FAD-FMNH(*)) with NADPH occurred in at least two phases in the absorbance change at 457nm. In the presence of Ca(2+)/CaM, the reduction rate of both phases was significantly increased. In contrast, an absorbance change at 596nm gradually increased in two phases, but the rate of the fast phase was decreased by approximately 50% of that in the presence of Ca(2+)/CaM. The air-stable semiquinone form was rapidly reduced by NADPH, but a significant absorbance change at 520 nm was not observed. These findings indicate that the conversion of FADH(2)-FMNH(*) to FADH(*)-FMNH(2) is unfavorable. Reduction of the FAD moiety is activated by CaM, but the formation rate of the active intermediate, FADH(*)-FMNH(2) is extremely low. These events could cause a lowering of enzyme activity in the catalytic cycle.  相似文献   

19.
The nitric oxide synthase of Drosophila melanogaster (dNOS) participates in essential developmental and behavioral aspects of the fruit fly, but little is known about dNOS catalysis and regulation. To address this, we expressed a construct comprising the dNOS reductase domain and its adjacent calmodulin (CaM) binding site (dNOSr) and characterized the protein regarding its catalytic, kinetic, and regulatory properties. The Ca2+ concentration required for CaM binding to dNOSr was between that of the mammalian endothelial and neuronal NOS enzymes. CaM binding caused the cytochrome c reductase activity of dNOSr to increase 4 times and achieve an activity comparable to that of mammalian neuronal NOS. This change was associated with decreased shielding of the FMN cofactor from solvent and an increase in the rate of NADPH-dependent flavin reduction. Flavin reduction in dNOSr was relatively slow following the initial 2-electron reduction, suggesting a slow inter-flavin electron transfer, and no charge-transfer complex was observed between bound NADP+ and reduced FAD during the process. We conclude that dNOSr catalysis and regulation is most similar to the mammalian neuronal NOS reductase domain, although differences exist in their flavin reduction behaviors. The apparent conservation between the fruit fly and mammalian enzymes is consistent with dNOS operating in various signal cascades that involve NO.  相似文献   

20.
Two regions, located at residues 594-606/614-645 and residues 1165-1178, are present in the reductase domain of human endothelial nitric-oxide synthase (eNOS) but absent in its counterpart, inducible nitric-oxide synthase (iNOS). We previously demonstrated that removing residues 594-606/614-645 resulted in an enzyme (Delta45) containing an intrinsic calmodulin (CaM) purified from an Sf9/baculovirus expression system (Chen, P.-F., and Wu, K.K. (2000) J. Biol. Chem. 275, 13155-13163). Here we have further elucidated the differential requirement of Ca2+/CaM for enzyme activation between eNOS and iNOS by either deletion of residues 1165-1178 (Delta14) or combined deletions of residues 594-606/614-645 and 1165-1178 (Delta45/ Delta14) from eNOS to mimic iNOS. We measured the catalytic rates using purified proteins completely free of CaM. Steady-state analysis indicated that the Delta45 supported NO synthesis in the absence of CaM at 60% of the rate in its presence, consistent with our prior result that CaM-bound Delta45 retained 60% of its activity in the presence of 10 mm EGTA. Mutant Delta14 displayed a 1.5-fold reduction of EC50 for Ca2+/CaM-dependence in l-citrulline formation, and a 2-4-fold increase in the rates of NO synthesis, NADPH oxidation, and cytochrome c reduction relative to the wild type. The basal rates of double mutant Delta45/Delta14 in NO production, NADPH oxidation, and cytochrome c reduction were 3-fold greater than those of CaM-stimulated wild-type eNOS. Interestingly, all three activities of Delta45/ Delta14 were suppressed rather than enhanced by Ca2+/CaM, indicating a complete Ca2+/CaM independence for those reactions. The results suggest that the Ca2+/CaM-dependent catalytic activity of eNOS appears to be conferred mainly by these two structural elements, and the interdomain electron transfer from reductase to oxygenase domain does not require Ca2+/CaM when eNOS lacks these two segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号