首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the Mediterranean corn borer, Sesamia nonagrioides, under long-day (LD) photoperiod is associated with juvenile hormone (JH) decline and pupation in the 5th or 6th larval instar. The larvae grown under short-day (SD) conditions maintain a moderate JH titer and enter diapause during which they undergo several extra larval molts. Both types of larvae exhibit similar levels of juvenile hormone esterase (JHE) activity that increases in each instar during the period of low ecdysteroid titer and drops when the titer rises to a molt-inducing peak. A suppression of JHE activity within 24h after application of an ecdysteroid agonist suggests that the drop of activity is a rapid and possibly direct response to ecdysteroids or their agonist. Esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP) suppressed more than 98% of the JHE activity without affecting pupation timing and adult development. The data indicate that JHE is not crucial for the switch between larval development, diapause, and metamorphosis in S. nonagrioides.  相似文献   

2.
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.  相似文献   

3.
Larvae of Sesamia nonagrioides developing under long day (LD) conditions pupate in the 5th or 6th instar, whereas under the short day (SD) conditions, they undergo several supernumerary larval molts and are regarded as diapausing. The development in early larval instars occurs in the LD larvae at a moderate and in the SD larvae at a high juvenile hormone (JH) titer; ecdysteroid titer cycles similarly under both conditions. The transformation to pupa is initiated by a burst of ecdysteroids at undetectable JH levels, whereas extra larval molts in the diapausing larvae are associated with moderate JH titer and irregular rises of ecdysteroids. Application of 0.2 ppm RH-2485 to the diet of the 6th instar larvae promotes hormonal changes supporting metamorphosis in the LD larvae and slightly accelerates larval molts in the diapausing SD larvae. The 0.5- and 1-ppm doses revert these patterns of endocrine regulations to a mode typical for early larval instars. Particularly dramatic is a JH titer increase provoked within 24 h in the LD larvae. After the treatment, both the LD and SD larvae undergo a series of larval molts, suggesting that hormonal programming of the larval development has been stabilized. A few insects receiving 1 ppm RH-2485, and a high proportion of those fed with 5 ppm RH-2485, deposit two cuticles within a single apolysis and die.  相似文献   

4.
The last larval moult of Galleria mellonella is induced by an elevation of ecdysteroid titre to more than 200 ng/g. After ecdysis the titre remains very low until 70 hr of the last-instar when a slight elevation in ecdysteroid concentration initiates the onset of metamorphosis. An ecdysteroid peak (275 ng/g), which occurs between 108 and 144 hr, is associated with wandering and cocoon spinning. Pupal ecdysis follows about 20 hr after a large ecdysteroid peak (780 ng/g) with a maximum in slowly-mobile prepupae (160 hr of the last larval instar). The ecdysteroid decrease between the two peaks coincides with the period when the larvae exposed to unfavourable conditions enter diapause. The pupal-adult moult is initiated by a high ecdysteroid peak (1500–2500 ng/g) in early pupae and imaginal cuticle is secreted in response to a smaller peak (ca. 500 ng/g) in the middle of pupal instar.Until early pupae, the ecdysteroid content is regulated by the prothoracic glands. In decapitated larvae the glands become spontaneously active after 30–40 days and the body titre of ecdysteroids undergoes an increase; the glands revert to inactivity when the insects accomplish secretion of pupal cuticle. A similar ecdysteroid increase occurs within 10 days when the decapitated larvae receive implants of brains releasing the prothoracicotropic neurohormone (PTTH). In either case, the pupation-inducing increase of ecdysteroids is 3 times higher than the large ecdysteroid peak in the last-instar of intact larvae. This indicates that the function of prothoracic glands in intact larvae is restrained, probably by the juvenile hormone (JH). Exogenous JH suppresses the spontaneous activation of the prothoracic glands in decapitated larvae and reduces the ecdysteroid concentration in those larvae (both decapitated and intact), whose glands were activated by PTTH. Furthermore, JH influences the PTTH release from the brain in situ: depending on JH concentration and the age and size of treated larvae, the PTTH liberation is either accelerated or delayed.Neither in G. mellonella larvae, nor in the diapausing pupae of Hyalophora cecropia and Celerio euphorbiae, does JH directly activate the prothoracic glands. It is suggested that the induction of the moult by JH in decerebrate insects, which has been observed in some species, is either due to indirect stimulation of ecdysteroid production or to increased sensitivity of target tissues to ecdysteroids. In G. mellonella, a moult occurs at a 5–15 times lower than usual ecdysteroid concentration when the last-instar larvae are exposed to JH.  相似文献   

5.
In the last larval instar of Lepidoptera, ecdysteroid in the absence of juvenile hormone (JH) is believed to cause the shift from larval to pupal development. In Manduca sexta, tissues such as the Verson's gland and crochet epidermis become pupally committed before the earliest pulse of ecdysteroid that occurs on day 2. What causes the change in commitment in these tissues? First it was necessary to determine at what stage these tissues become competent to express the pupal program. Last instar larvae of different ages were induced to molt prematurely by feeding the ecdysteroid analog RH5992 and Verson's gland proteins were analyzed by SDS-polyacrylamide gel electrophoresis. Glands became competent to make pupal proteins between 24 and 32 h after the last larval ecdysis. Next, hormonal regulation of competence was examined in ligated abdomens of 12h last instar larvae. Treatment with JH II acid or methoprene acid plus a low dose (1/50th of the molt inducing dose) of RH5992 induced competence, whereas RH5992 alone, methoprene acid alone or methoprene plus RH5992 did not. Verson's glands maintained in vitro produced pupal proteins in response to methoprene acid together with RH5992 but not with RH5992 alone. Likewise, crochet epidermis lost the ability to make crochets (metamorphic change) only in isolated abdomens treated with JH II acid or methoprene acid and low doses of RH5992. In conclusion, JH acid in the presence of basal levels of ecdysteroid induces tissue competence for metamorphosis. Metamorphic competence is followed by commitment, induced by a small pulse of ecdysteroid in the absence of JH, and finally by expression caused by a high titer of ecdysteroid. It is proposed that JH acid is an essential metamorphic hormone.  相似文献   

6.
The progress of developmental programme in the epidermal cells of last instar larvae of Bombyx mori was determined by ecdysteroid injections in normal and in JH-treated larvae. To clarify the importance of food intake in the control of development, starved animals were also used.The instar begins with a period during which the larval programme is expressed: this occurs in the presence of 20-hydroxyecdysone. Epidermal cells can thereafter secrete pupal cuticle after ecdysteroid injection although the larval programme is normally still present. During the last period only pupal characters can be expressed either in normal or in 20-hydroxyecdysone-injected larvae.These different developmental phases are not correlated with obligatory and facultative feeding periods.Transition from the first to the second phases is correlated with the absence of JH effects on pupal genes. JH applications during the second period, however, prevent the expression of pupal characters after 20-hydroxyecdysone injection. Thus, during this period, the pupal programme is not stabilized. Cellular reprogramming itself occurs at the onset of the last developmental period and is probably under the control of ecdysteroids.  相似文献   

7.
Juvenile hormone esterase (JHE) is the primary juvenile hormone (JH) metabolic enzyme in insects and plays important roles in the regulation of molt and metamorphosis. We investigated its mRNA expression profiles and hormonal control in Bombyx mori larvae. JHE mRNA was expressed at the end of the 4th and 5th (last) larval instars in the midgut and in all the three (anterior, middle, posterior) parts of the silk gland. In the fat body, JHE expression peaked twice in the 5th instar, at wandering and before pupation, while it gradually decreased through the 4th instar. When 20-hydroxyecdysone (20E) was injected into mid-5th instar larvae, JHE mRNA expression was induced in the anterior silk gland but suppressed in the fat body. Topical application of a juvenile hormone analog fenoxycarb to early-5th instar larvae induced JHE expression in both tissues. In the anterior silk gland, JHE expression was accelerated and strengthened by 20E plus fenoxycarb treatments compared with 20E or fenoxycarb single treatment, indicating positive interaction of 20E and JH. JHE mRNA is thus expressed in tissue-specific manners under the control of ecdysteroids and JH.  相似文献   

8.
Sesamia nonagrioides (Lepidoptera: Noctuidae) larvae reared under long day (LD; 16L:8D) conditions pupate after 5 or 6 larval instars, whereas under short day (SD; 12L:12D) conditions they undergo up to 12 additional molts before pupating. This extended period of repeated molting is maintained by high levels of juvenile hormone (JH). Previous work demonstrated that both LD and SD larvae decapitated in the 6th instar pupate but further development is halted. By contrast, about one-third of SD larvae from which only the brain has been removed, undergo first a larval molt, then pupate and subsequently developed to the adult stage. Debrained LD larvae molt to larvae exceptionally but regularly pupate and produce adults. Implanted brains may induce several larval molts in debrained recipient larvae irrespectively of the photoperiodic conditions. The results of present work demonstrate that the prothoracic glands (PGs) and the corpora allata (CA) of debrained larvae continue to produce ecdysteroids and JHs, respectively. PGs are active also in the decapitated larvae that lack JH, consistent with the paradigm that CA, which are absent in the decapitated larvae, are the only source of this hormone. Completion of the pupal-adult transformation in both LD and SD debrained insects demonstrates that brain is not crucial for the development of S. nonagrioides but is required for diapause maintenance. Application of JH to headless pupae induces molting, presumably by activating their PGs. It is likely that JH plays this role also in the induction of pupal-adult transformation in debrained insects. Application of the ecdysteroid agonist RH 2485 (methoxyfenozide) to headless pupae also elicits molting: newly secreted cuticle is in some cases thin and indifferent, in other cases it bears distinct pupal or adult features.  相似文献   

9.
10.
11.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

12.
 Insect molting and metamorphosis are orchestrated by ecdysteroids with juvenile hormone (JH) preventing the actions of ecdysteroids necessary for metamorphosis. During the molt and metamorphosis of the dorsal abdominal epidermis of the tobacco hornworm, Manduca sexta, the isoforms involved in the ecdysone receptor (EcR)/Ultraspiracle (USP) complex change with the most dramatic switch being the loss of USP-1 and the appearance of USP-2 during the larval and pupal molts. We show here that this switch in USP isoforms is mediated by high 20-hydroxyecdysone (20E) and that the presence of JH is necessary for the down-regulation of USP-1 mRNA. The decrease of USP-1 mRNA in day 2 fourth instar larval epidermis in vitro required exposure to a high concentration (10–5 M) of 20E equivalent to the peak ecdysteroid concentration in vivo, whereas the increase of USP-2 mRNA occurred at lower concentrations (effective concentrations, EC50=6.3×10–7 M). During the pupal molt of allatectomized larvae which lack JH, USP-2 mRNA increased normally with the increasing ecdysteroid titer, whereas USP-1 mRNA remained high until pupation. When day 2 fifth instar larval epidermis was exposed to 500 ng/ml 20E in the absence of JH to cause pupal commitment of the cells by 24 h, USP-1 RNA remained at its high preculture level for 12 h, then increased two- to threefold by 24 h. The increase was prevented by the presence of 1 μg/ml JH I which also prevents the pupal commitment of the cells. By contrast, USP-2 mRNA increased steadily with the same EC50 as in fourth stage epidermis, irrespective of the presence or absence of JH. Under the same conditions, mRNAs for both EcR-B1 and EcR-A isoforms were up-regulated by 20E, each in its own time-dependent manner, similar to that seen in vivo. These initial mRNA increases were unaffected by the presence of JH I, but those seen after 12 h exposure to 20E were prevented by JH, indicating a difference in response between larvally and pupally committed cells. The presence of JH which maintained larval commitment of the cells also prolonged the half-life of the EcR proteins in these cells. These results indicate that both EcR and USP RNAs are regulated by 20E and can be modulated by JH in a complex manner with only that of USP-2 apparently unaffected. Received: 16 July 1998 / Accepted: 5 August 1998  相似文献   

13.
The caterpillars of Sesamia nonagrioides developing under long-day (LD) photoperiod pupate in the 5th or 6th instar whereas under short day (SD) conditions they enter diapause and undergo several extra larval molts. The diapause is terminated within 1-3 instars upon transfer of SD larvae to the LD conditions. Brain removal from the 6th instar larvae promotes pupation followed by imaginal development; however, one third of the SD larvae and 12% of the LD larvae debrained at the start of the instar first undergo 1-2 larval molts. The incidence of larval molts is enhanced by the brain implants. Exclusively pupal molts occur in the LD larvae debrained late in the 6th instar. Decapitation elicits pupation in both LD and SD larvae, except for some of the 4th and 5th and rarely 6th instar that are induced to a fast larval molt. The pupation of decapitated larvae is reverted to a larval molt by application of a juvenile hormone (JH) agonist. No molts occur in abdomens isolated from the head and thorax prior to the wandering stage. Abdomens isolated later undergo a larval (SD insects) or a pupal (LD insects) molt. Taken together the data reveal that in S. nonagrioides (1) several larval molts followed by a pupal and imaginal molt can occur without brain; (2) an unknown head factor outside the brain is needed for the pupal-adult molt; (3) brain exerts both stimulatory and inhibitory effect on the corpora allata (CA); (4) larval molts induced in CA absence suggest considerable JH persistence.  相似文献   

14.
15.
16.
17.
Fluctuations in ecdysteroid production by explanted prothoracic glands (PG) during the penultimate and last larval instars parallel changes in ecdysteroid titer in the hemolymph. The in vitro output of ecdysteroids increases up to 30-fold when PG are co-cultured with the brain. Maximal amounts of ecdysteroids are produced when both PG and brain are taken from larvae at the time of the molt-inducing ecdysteroid peaks (days 2–3 in the penultimate and days 5–6 in the last instar), and also from day 3 last instar larvae that exhibit a small rise of hemolymph ecdysteroids. Detailed investigations on penultimate instar larvae revealed that their PG become sensitive to the stimulation on day 1 (about 24 h after ecdysis), but the stimulatory brain potential is restricted to days 2 and 3. Both the stimulatory capacity of the brain and the sensitivity of PG are lost on days 4 and 5, i.e., after the ecdysteroid surge on day 3. PG explanted from young adults do not secrete appreciable amounts of ecdysteroids but can be stimulated to ecdysteroid production with active larval brains. Arch. Insect Biochem. Physiol. 36:85–93, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
In the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) both polydnavirus and the parasitoid larva manipulate host development. Parasitization leads to a premature drop in juvenile hormone titre and a precocious onset of metamorphosis in the 5th larval instar. The C. inanitus bracovirus (CiBV) alone causes a reduction in host ecdysteroid titres at the pupal cell formation stage and prevents pupation. Here we report three new findings. (1) We show that parasitization causes a reduction in haemolymph ecdysteroid titre immediately after the moult to the 5th instar; similarly low values were seen in nonparasitized larvae after the moult to the 6th instar. These data along with parasitoid removal experiments indicate that the low ecdysteroid titre after the moult is a very early sign of the upcoming metamorphosis. (2) In vitro experiments with prothoracic glands and brain extracts showed that CiBV affects both prothoracic glands and prothoracicotropic hormone after the stage of pupal cell formation. (3) In the haemolymph of parasitized larvae the ecdysteroid titre increased in the late cell formation stage, i.e. immediately before egression of the parasitoid. In vitro experiments showed that late 2nd instar parasitoids release ecdysteroids and are thus very likely responsible for the rise in host ecdysteroids.  相似文献   

19.
20.
Juvenile hormones (JHs) and ecdysteroids are critical insect developmental hormones. JH esterase (JHE) and JH epoxide hydrolase (JHEH) are JH-selective enzymes that metabolize JH and thus regulate the titer of JH. Baculoviruses are known to alter host endocrine regulation. The nucleopolyhedroviruses, AdhoNPV and AdorNPV, are known to have slow and fast killing activity against Adoxophyes honmai (Lepidoptera: Tortricidae), respectively. Here we found that when penultimate (4th) instar A. honmai are inoculated with AdhoNPV or AdorNPV, the mean survival time is 9.7 and 8.2 days, respectively. The larvae molted once but did not pupate. The AdhoNPV- or AdorNPV-infected larvae did not show a dramatic increase in JHE activity as was found in mock-infected larvae, instead they showed a marked decrease in JHE activity. In contrast, both viral infections had no effect on JHEH activity. In order to further characterize the JHE activity, the JHE-coding sequence of A. honmai (ahjhe) was cloned and confirmed to encode a biologically active JHE. Quantitative real-time PCR analysis of ahjhe expression in 4th and 5th instar A. honmai revealed that AdhoNPV and AdorNPV are able to reduce ahjhe expression levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号