首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Map positions have been determined for 42 non-redundant Arabidopsis expressed sequence tags (ESTs) showing similarity to disease resistance genes (R-ESTs), and for three Pto-like sequences that were amplified with degenerate primers. Employing a PCR-based strategy, yeast artificial chromosome (YAC) clones containing the EST sequences were identified. Since many YACs have been mapped, the locations of the R-ESTs could be inferred from the map positions of the YACs. R-EST clones that exhibited ambiguous map positions were mapped as either cleavable amplifiable polymorphic sequence (CAPS) or restriction fragment length polymorphism (RFLP) markers using F8 (Ler x Col-0) recombinant inbred (RI) lines. In all cases but two, the R-ESTs and Pto-like sequences mapped to single, unique locations. One R-EST and one Pto-like sequence each mapped to two locations. Thus, a total of 47 loci were identified in this study. Several R-ESTs occur in clusters suggesting that they may have arisen via gene duplication events. Interestingly, several R-ESTs map to regions containing genetically defined disease resistance genes. Thus, this collection of mapped R-ESTs may expedite the isolation of disease resistance genes. As the cDNA sequencing projects have identified an estimated 63% of Arabidopsis genes, a very large number of R-ESTs (~95), and by inference disease resistance genes of the leucine-rich repeat-class probably occur in the Arabidopsis genome.  相似文献   

2.
YAC clones carrying repeated DNA sequences from the Arabidopsis thaliana genome have been characterized in two widely used Arabidopsis YAC libraries, the EG library and the EW library. Ribosomal, chloroplast and the paracentromeric repeat sequences are differentially represented in the two libraries. The coordinates of YAC clones hybridizing to these sequences are given. A high proportion of EG YAC clones were classified as containing chimaeric inserts because individual clones carried unique sequences and repetitive sequences originating from different locations in the genome. None of the EW YAC clones analysed were chimaeric in this way. YAC clones carrying tandemly repeated sequences, such as the paracentromeric or rDNA sequences, exhibited a high degree of instability. These observations need to be taken into account when using these libraries in the development of a physical map of the Arabidopsis genome and in chromosome walking experiments.  相似文献   

3.
We identified 411 processed sequences in the Arabidopsis thaliana genome based on the fact that they have lost their intron(s) and have a length that is at least 95% of the length of the gene that gave rise to them. These sequences were generated by 230 different genes and clearly originated from retrotranspositons events because most of them (91%) have a poly(A)-tail. They are composed of 376 sequences with frame shifts and/or premature stop codons (processed pseudogenes) and 35 sequences without disablements (processed genes). Eleven of these processed genes are likely functional retrotransposed genes because they have low Ka/Ks ratios and high Ks values, and their sequences match numerous Arabidopsis ESTs. Processed sequences are mostly randomly distributed in the Arabidopsis genome and their rate of accumulation has steadily been decreasing since it peaked some 50 MYA. In contrast with the situation observed in mammals, the processed sequences found in the Arabidopsis genome originate from genes with high copy numbers and not from highly expressed genes. The patterns of spontaneous mutations in Arabidopsis are slightly different than those of mammals but are similar to those observed in Drosophila. This suggests that methylated cytosine deamination is less frequent in Arabidopsis than in mammals. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Juergen Brosius]  相似文献   

4.
Saturating the genetic map of Arabidopsis thaliana with embryonic mutations   总被引:7,自引:4,他引:3  
One goal of the Arabidopsis genome project is to identify every gene with an essential function in growth and development. Towards that end, the results are reported here of a mapping project designed to enhance the linkage map of Arabidopsis and establish a valuable resource of mutations in essential genes with known map locations. Embryo-defective (emb) mutations were chosen because they represent the most common heritable defect identified following mutagenesis in Arabidopsis. Multiple marker lines with easily scored phenotypes were constructed to facilitate mapping efforts. Recombination data were obtained for 169 mutants defective in embryo-genesis. The chromosomal locations of 110 emb genes are presented in this report. Twenty-six of these genes are tagged with T-DNA. Nine other mutants isolated following seed transformation appear to contain chromosomal translocations. Another 31 mutant genes in the collectiohave been assigned to a linkage group but not yet placed on the map. Nineteen examples of duplicate alleles have also been found. This is consistent with the estimate that approximately 500 genes readily mutate to give an embryo-defective phenotype in Arabidopsis. With continued progress, it may therefore be possible to approach saturation for this important class of mutations. Molecular cloning of these genes should be facilitated by identifying cDNAs and genomic sequences that map to similar locations.  相似文献   

5.
The two forms of cytoplasmic male sterility (CMS) native to the oilseed rape or canola species Brassica napus, nap and pol, have novel features that may provide insight into the molecular mechanisms through which CMS/nuclear restorer systems evolve. One such feature is the finding that the distinct nuclear restorer genes for the two systems represent different alleles or haplotypes of the same nuclear locus. Improved understanding of how these systems have evolved will require molecular cloning and characterization of this novel locus. We have employed an approach that exploits the regional co-linearity between the Arabidopsis and Brassica genomes to construct a high-resolution genetic map of the nuclear restorer for the pol system, Rfp. Specifically, Arabidopsis-derived sequences have been used as a set of ordered RFLP probes to localize Rfp to a region of the B. napus genome equivalent to a 115 kb interval on Arabidopsis chromosome 1. Based on the known relationship of physical distances between orthologous segments of Arabidopsis and Brassica chromosomes, it is anticipated that the B. napus restorer locus is now mapped to sufficient resolution to permit its isolation and characterization.  相似文献   

6.
In Arabidopsis, map-based cloning has been developed to an effective method in mutant genetic analysis because high-density markers are available, candidate genes or genomic sequences can be amplified by PCR, and transgenic techniques are simplified. Mutant ses named from shortened early-stage siliques was used as an example to show how to map a mutant in this way. By the process of bulked segregants analysis, linkage testing, large-scale and fine-scale mapping, mutant ses was narrowed into a 67 kb interval from CER448792 (2000541 bp) to CER464544 (2067844 bp) crossing over the right of BAC F12K11 to the left of the BAC F4H5 including at most 22 putative genes on the top of chromosome 1. In sequence-based map of Arabidopsis genes with mutant phenotype (SMAGMP) mutant ses was between AT1g06150 (EMB1444) and AT1g08060 (MOM). The ses mapping also showed that developed markers on polymorphism site of CAPC not only were simplified but worked well. Twenty-four markers from CAPC used in the mapping maybe help Arabidopsis researchs with others and the methods related to ses mapping also gave an example of positional cloning. The text was submitted by the authors in English.  相似文献   

7.
Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa   总被引:1,自引:0,他引:1  
A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F3 population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences in the top arm of Arabidopsis chromosome 3, suggesting a synteny between the two species. For fine mapping of Crr3, a number of STS markers were developed based on genomic information from Arabidopsis. We obtained polymorphisms in 23 Arabidopsis-derived STS markers, 11 of which were closely linked to Crr3. The precise position of Crr3 was determined using a population of 888 F2 plants. Eighty plants showing recombination around Crr3 locus were selected and used for the mapping. A fine map of 4.74 cM was obtained, in which two markers (BrSTS-41 and BrSTS-44) and three markers (OPC11-2S, BrSTS-54 and BrSTS-61) were cosegregated. Marker genotypes of the 21 selected F2 families and CR tests of their progenies strongly suggested that the Crr3 gene is located in a 0.35 cM segment between the two markers, BrSTS-33 and BrSTS-78.  相似文献   

8.
9.
10.
With a long-term goal of constructing a linkage map of Rhododendron enriched with gene-specific markers, we utilized Rhododendron catawbiense ESTs for the development of high-efficiency (in terms of generating polymorphism frequency) PCR-based markers. Using the gene-sequence alignment between Rhododendron ESTs and the genomic sequences of Arabidopsis homologs, we developed ‘intron-flanking‘ EST–PCR-based primers that would anneal in conserved exon regions and amplify across the more highly diverged introns. These primers resulted in increased efficiency (61% vs. 13%; 4.7-fold) of polymorphism-detection compared with conventional EST–PCR methods, supporting the assumption that intron regions are more diverged than exons. Significantly, this study demonstrates that Arabidopsis genome database can be useful in developing gene-specific PCR-based markers for other non-model plant species for which the EST data are available but genomic sequences are not. The comparative analysis of intron sizes between Rhododendron and Arabidopsis (made possible in this study by aligning of Rhododendron ESTs with Arabidopsis genomic sequences and the sequencing of Rhododendron genomic PCR products) provides the first insight into the gene structure of Rhododendron. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
Arachis hypogaea is a widely cultivated crop both as an oilseed and protein source. The genomic analysis of Arachis species hitherto has been limited to the construction of genetic maps; the most comprehensive one contains 370 loci over 2,210 cM in length. However, no attempt has been made to analyze the physical structure of the peanut genome. To investigate the practicality of physical mapping in peanut, we applied a total of 117 oligonucleotide-based probes (overgos) derived from genetically mapped RFLP probes onto peanut BAC filters containing 182,784 peanut large-insert DNA clones in a multiplex experimental design; 91.5% of the overgos identified at least one BAC clone. In order to gain insights into the potential value of Arabidopsis genome sequence for studies in divergent species with complex genomes such as peanut, we employed 576 Arabidopsis-derived overgos selected on the basis of maximum homology to orthologous sequences in other plant taxa to screen the peanut BAC library. A total of 353 (61.3%) overgos detected at least one peanut BAC clone. This experiment represents the first steps toward the creation of a physical map in peanut and illustrates the potential value of leveraging information from distantly related species such as Arabidopsis for both practical applications such as comparative map-based cloning and shedding light on evolutionary relationships. We also evaluated the possible correlation between functional categories of Arabidopsis overgos and their success rates in hybridization to the peanut BAC library.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
A bacterial artificial chromosome (BAC) library was constructed for watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus) with an average insert-size of 106 kb, providing 21 haploid genome equivalents. The library was used to identify BAC clones that are anchored to probes evenly distributed on the genomes of melon or Arabidopsis. Twenty eight probes (representing 66% of the tested probes) from melon and 30 probes (65%) from Arabidopsis identified positive BAC clones. Two methods were implemented to identify SSRs from the positively hybridizing BAC clones. First, analysis of BAC end sequences revealed 37 SSRs. For the second method, pooled DNA of BACs identified by the melon probes was used to develop a shotgun library. The library was then screened with synthetic SSR oligonucleotides by hybridization. Sequence analysis of positively hybridizing shotgun clones revealed 142 different SSRs. Thirty eight SSRs were characterized using three watermelon cultivars, five plant introduction (PI) accessions of C. lanatus var lanatus and four PIs of C. lanatus var citroides. Of these, 36 (95%) were found to be polymorphic with up to six alleles per marker. Polymorphism information content values for polymorphic markers varied between 0.22 and 0.79 with an average of 0.53. The methods described herein will be valuable for the construction of a watermelon linkage map with SSRs evenly distributed on its genome that is anchored to the genomes of melon and Arabidopsis.  相似文献   

13.
The disease resistance genes RPS2 of Arabidopsis and N of tobacco, among other recently cloned resistance genes, share several conserved sequences. Degenerate oligonucleotide primers, based on conserved sequences in the nucleotide binding site (NBS) and a weak hydrophobic domain of RPS2 and N, were used to amplify homologous sequences from Arabidopsis thaliana. Amplification products were obtained that were similar in sequence to the disease resistance genes RPS2, RPM1, N and L6. The Arabidopsis CIC-YAC library was used to identify the position of the disease resistance homologs on the Arabidopsis genome. Their map positions could be correlated with the disease resistance loci RPS5, RAC1, RPP9, CAR1, RPP7, RPW2, RPP1, RPP10, RPP14, RPP5, RPP4, RPS2, RPW6, HRT, RPS4, RPP8, RPP21, RPP22, RPP23, RPP24 and TTR1. This method was therefore not only successful in the identification of sequences located within gene clusters that are involved in disease resistance, but could also contribute to the cloning of disease resistance genes from Arabidopsis.  相似文献   

14.
Three new, unique cDNA sequences encoding isoforms of calmodulin (CaM) were isolated from an Arabidopsis cDNA library cloned in gt10. These sequences (ACaM-4, -5, and -6) represent members of the Arabidopsis CaM gene family distinct from the three DNA sequences previously reported. ACaM-4 and -6 encode full-length copies of CaM mRNAs of ca. 0.75 kb. The ACaM-5 sequence encodes a partial length copy of CaM mRNA that is lacking sequences encoding the amino-terminal 10 amino acids of mature CaM and the initiator methionine. The derived amino acid sequence of ACaM-5 is identical to the sequences encoded by two of the previously characterized ACaM cDNAs, and is identical to TCH-1 mRNA, whose accumulation was increased by touch stimulation. The polypeptides encoded by ACaM-4 and -6 differ from that encoded by ACaM-5 by six and two amino acid substititions, respectively. Most of the deduced amino acid sequence substitutions in the Arabidopsis CaM isoforms occurred in the fourth Ca2+-binding domain. Polymerase chain reaction amplification assays of ACaM-4, -5 and -6 mRNA sequences indicated that each accumulated in Arabidopsis leaf RNA fractions, but only ACaM-4 and -5 mRNAs were detected in silique total RNA. The six different CaM cDNA sequences each hybridize with unique Eco RI restriction fragments in genomic Southern blots of Arabidopsis DNA, indicating that these sequences were derived from distinct structural genes. Our results suggest that CaM isoforms in Arabidopsis may have evolved to optimize the interaction of this Ca2+-receptor protein with specific subsets of response elements.  相似文献   

15.
Summary We have isolated a cytochrome c gene fromArabidopsis thaliana (cv. Columbia), which is the first cytochrome c gene to be cloned from a higher plant. Genomic DNA blot analysis indicates that there is only one copy of cytochrome c inArabidopsis. The gene consists of three exons separated by two introns. Gene features such as regulatory regions, codon usage, and conserved splicing-specific sequences are all present and typical of dicotyledonous plant nuclear genes. We have constructed phenograms and cladograms for cytochrome c amino acid sequences and histone H3, alcohol dehydrogenase, and actin DNA sequences. For both cytochrome c and histone H3,Arabidopsis clusters poorly with other higher plants. Instead, it clusters withNeurospora and/or the yeasts. We suggest that perhaps this observation should be considered when usingArabidopsis as a model system for higher plants.  相似文献   

16.
17.
18.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

19.
20.
Tomato contains homologues of Arabidopsis cryptochromes 1 and 2   总被引:4,自引:0,他引:4  
Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, while three genes have been found in the fern Adiantum. We report the characterisation of tomato CRY genes CRY1 and CRY2. They map to chromosomes 4 and 9, respectively, show relatively constitutive expression and encode proteins of 679 and 635 amino acids, respectively. These proteins show higher similarity to their Arabidopsis counterparts than to each other, suggesting that duplication between CRY1 and CRY2 is an ancient event in the evolution of seed plants. The seed plant cryptochromes form a group distinct from the fern cryptochromes, implying that only one gene was present in the common ancestor between these two groups of plants. Most intron positions in CRY genes from plants and ferns are highly conserved. Tomato cry1 and cry2 proteins carry C-terminal domains 210 and 160 amino acids long, respectively. Several conserved motifs are found in these domains, some of which are common to both types of cryptochromes, while others are cryptochrome-type-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号