首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The catalase (H2O2:H2O2 oxidoreductase; E.C.1.11.1.6; CAT) gene-enzyme system in Zea mays L (maize) represents an ideal model for studying the molecular basis of developmental gene regulation in higher eukaryotes. This system comprises a family of structural genes that are highly regulated, both temporally and spatially, during maize development. In maize, there are four distinct forms (isozymes) of catalase that are readily discernible by convetional separation procedures. Three of the catalases have been studied in detail from a genetic and biochemical viewpoint. The catalases CAT-1, CAT-2, and CAT-3 are encoded by the distinct, unlinked genes Cat1, Cat2, and Cat3, respectively. Each of the structural genes is highly regulated both spatially and temporally in its expression. Cat1 is expressed primarily in the endosperm, aleurone, pericarp, and scutellum of developing kernels, and in the root, shoot, and scutellum of very young seedlings. Cat2 is expressed primarily in the scutellum and leaf during postgerminative sporophytic development. Cat3 is expressed, for the most part, in the shoot and pericarp of young seedlings. A number of regulatory variants have been recovered that affect the developmental program of expression of the catalases. Analysis of one variant allowed for the identification of a temporal regulatory gene (Car1) that specifically alters the developmental program of the Cat2 structural gene by acting to regulate the rate of CAT-2 protein synthesis. Cat1 has been mapped on chromosome 1S, 37 map units (m.u.) from the Cat2 structural gene. Another variant line has been isolated which lacks expression of the Cat2 gene in its tissues at all stages of development. Isolated polysomes from this line (A16) were translated in vitro, and the products were immunoprecipitated with CAT-2-specific antibodies. No CAT-2 was detectable in the A16 labeled immunoprecipitates, whereas CAT-2 was readily detected in the normal line, W64A, under similar conditions. The temporal and spatial expression of the Cat structural genes is not only influenced by genetic factors (as above), but is also responsive to exogenously applied environmental signals: light, hormones, and temperature. The mechanisms by which such signals specifically affect CAT-2 expression will be discussed.  相似文献   

2.
The cellulose synthase-like (ZmCSL) gene family of maize was annotated and its expression studied in the maize mesocotyl. A total of 28 full-length CSL genes and another 13 partial sequences were annotated; four are predicted to be pseudogenes. Maize has all of the CSL subfamilies that are present in rice, but the CSLC subfamily is expanded from 6 in rice to 12 in maize, and the CSLH subfamily might be reduced from 3 to 1. Unlike rice, maize has a gene in the CSLG subfamily, based on its sequence similarity to two genes annotated as CSLG in poplar. Light regulation of glycan synthase enzyme activities and CSL gene expression were analyzed in the mesocotyl. A Golgi-localized glucan synthase activity is reduced by ~50% 12 h after exposure to light. β-1,4-Mannan synthase activity is reduced even more strongly (>85%), whereas β-1,4-xylan synthase, callose synthase, and latent IDPase activity respond only slightly, if at all, to light. At least 17 of the CSL genes (42%) are expressed in the mesocotyl, of which four are up-regulated at least twofold, seven are down-regulated at least twofold, and six are not affected by light. The results contribute to our understanding of the structure of the CSL gene family in an important food and biofuel plant, show that a large percentage of the CSL genes are expressed in the specialized tissues of the mesocotyl, and demonstrate that members of the CSL gene family are differentially subject to photobiological regulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
Auxin response factors (ARFs) are an important family involved in auxin-mediated response through specific binding to auxin response elements (AuxREs). A few members of the ARF family have been functionally characterized in Arabidopsis, rice (Oryza sativa), Poplar (Populous trichocarpa). However, little is known about ARF genes in maize (Zea mays). We performed a comprehensive bioinformatics analysis of the maize ARF gene family including analysis of the genome sequence, conserved domains, chromosomal locations, phylogenetic relationships, gene duplication, and expression profiles. 35 ZmARF genes were identified and categorized into four groups (Class I, II, III, and IV). In addition, a segmental ZmARF duplication event was shown to play an important role in maize ARF gene expansion. 7 ZmARF genes had no expression in specific tissues we obtained, but presented in mixed tissues according to the NCBI EST database, respectively. These studies have laid the theoretical foundation for further functional verification of these ZmARF genes.  相似文献   

5.
6.
A full-size cDNA clone (1614 bp) encoding calreticulin was isolated from a PCR-based cDNA library of maize in vitro zygotes. Calreticulin is a major Ca2+ storage protein located mainly in the lumen of the endoplasmic reticulum but also in the nucleus and/or cytoplasm of some cells. A differential screening between cDNA libraries originating from 104 in vitro zygotes (18 h after in vitro fertilization) and 128 unfertilized egg cells was performed to isolated newly expressed genes or genes expressed more abundantly after fertilization. The expression of the isolated cDNA clone is enhanced after fertilization and strongly correlated to cell division. Sequence comparison to a shorter maize calreticulin cDNA isolated from a conventional cDNA library proves the ability and reproducibility of the recently described method for PCR based cDNA library construction from a few plant cells [12]. It is further shown that calreticulins in maize are probably transcribed from a small gene family differentially expressed in abundance in diverse tissues. The deduced amino acid sequence encodes an acidic protein (pI 4.17) of 48 kDa sharing 77–92% and 50–54% homology to other plant and animal calreticulins, respectively. The described calreticulin gene represents to our knowledge the first cDNA clone isolated from a RT/PCR cDNA library originating from only a few plant cells and is the first gene isolated from zygotes of higher plants.  相似文献   

7.
8.
Genome-wide identification and characterisation of F-box family in maize   总被引:1,自引:0,他引:1  
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.  相似文献   

9.
A Zea mays cDNA clone, ZmERabp4, coding for a new member of the auxin-binding protein family was isolated. The primary amino acid sequence contains an N-terminal hydrophobic leader sequence, a potential glycosylation site (Asn136-Thr-Thr) and a C-terminal KDEL motif known to be responsible for retention of proteins within the lumen of the ER. The expression pattern of the ZmERabp4 gene in various organs of maize differs from the expression pattern previously observed for the ZmERabp1 gene. The ZmERabp4 gene is expressed highly in male flower organs, whereas the ZmERabp1 gene shows highest expression in female flower parts. In situ hybridization and analysis by laser scanning microscopy revealed enhanced levels of expression for both genes in the coleoptile when compared with the primary leaf of etiolated maize seedlings.  相似文献   

10.
The plant cell wall is the structural basis of cellular form and thus forms a foundation on which morphogenesis builds organs and tissues. Enzymes capable of modifying major wall components are prominent candidates for regulating wall form and function. Xyloglucan endotransglucosylases/hydrolases (XTHs) are predicted to participate in xyloglucan integration and/or restructuring. XTHs are encoded by large gene families in plants; the Arabidopsis genome encodes 33 XTHs. To gain insight into the potential physiological relevance of the distinct members of this family, GUS reporter fusion genes were constructed, and plants expressing these transgenes were characterized to reveal spatial and temporal patterns of expression. In addition, Genevestigator sources were mined for comprehensive and comparative XTH expression regulation analysis. These data reveal that the Arabidopsis XTHs are likely expressed in every developmental stage from seed germination through flowering. All organs show XTH::GUS expression and most, if not all, are found to express multiple XTH::GUS genes. These data suggest that XTHs may contribute to morphogenesis at every developmental stage and in every plant organ. Different XTHs have remarkably diverse and distinct expression patterns indicating that paralogous genes have evolved differential expression regulation perhaps contributing to the maintenance of the large gene family. Extensive overlap in XTH expression patterns is evident; thus, XTHs may act combinatorially in determining wall properties of specific tissues or organs. Knowledge of gene-specific expression among family members yields evidence of where and when gene products may function and provides insights to guide rational approaches to investigate function through reverse genetics. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
12.
This study comprises a comprehensive gene expression analysis of the root tip specific maize gene ZmGrp3. In the first part of this paper expression of ZmGrp3 was studied in maize inbred lines. First, RNA in situ hybridization experiments confined the expression of ZmGrp3 to the columella and the epidermis of all embryonic and postembryonic root types. Second, Northern-blot analyses of the maize root initiation mutants rtcs and lrt1 revealed that the ZmGrp3 gene is not expressed prior to root initiation, thus providing a novel marker for this developmental process. Finally, a comprehensive expression profiling in 42 tissues via the Lynx MPSS system revealed almost exclusive expression of ZmGrp3 in maize roots. In the second part of this survey, ZmGrp3 expression was assayed in maize hybrids. In this context, a novel approach to quantify allele-specific contribution to gene expression in maize hybrids was developed. This assay combines RT–PCR amplification of polymorphisms between two alleles and subsequent quantification of allele-specific gene expression via a combination of didesoxyterminator assays and capillary electrophoresis. Allelic expression of the ZmGrp3 gene in six reciprocal hybrids generated from three ZmGrp3 alleles was analyzed via a new statistical mixed model approach.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
14.
Supv3L1 is an evolutionarily conserved helicase that plays a critical role in the mitochondrial RNA surveillance and degradation machinery. Conditional ablation of Supv3L1 in adult mice leads to premature aging phenotypes including loss of muscle mass and adipose tissue and severe skin abnormalities. To get insights into the spatial and temporal expression of Supv3L1 in the mouse, we generated knock-in and transgenic strains in which an EGFP reporter was placed under control of the Supv3L1 native promoter. During development, expression of Supv3L1 begins at the blastocyst stage, becomes widespread and strong in all fetal tissues and cell types, and continues during postnatal growth. In mature animals reporter expression is only slightly diminished in most tissues and continues to be highly expressed in the brain, peripheral sensory organs, and testis. Together, these data confirm that Supv3L1 is an important developmentally regulated gene, which continues to be expressed in all mature tissues, particularly the rapidly proliferating cells of testes, but also in the brain and sensory organs. The transgenic mice and cell lines derived from them constitute a valuable tool for the examination of the spatial and temporal aspects of Supv3L1 promoter activity, and should facilitate future screens for small molecules that regulate Supv3L1 expression.  相似文献   

15.
16.
17.
SIMILAR TO RCD ONE (SRO) is a small plant-specific gene family, which play essential roles in plant growth and development as well as in abiotic stresses. However, the function of SROs in maize is still unknown. In our study, six putative SRO genes were isolated from the maize genome. A systematic analysis was performed to characterize the ZmSRO gene family. The ZmSRO gene family was divided into two groups according to the motif and intron/exon analysis. Phylogenetic analysis of them with other plants showed that the clades of SROs along with the divergence of monocot and dicot and ZmSROs were more closely with OsSROs. Many abiotic stress response and hormone-induced cis-regulatory elements were identified from the promoter region of ZmSROs. Furthermore, RNA-seq analysis indicated that SRO genes were widely expressed in different tissues and development stages in maize, and the expression divergence was also obviously observed. Analyses of expression in response to PEG6000 and NaCl treatment, in addition to exogenous application of ABA and GA hormones showed that the majority of the members display stress-induced expression patterns. Taken together, our results provide valuable reference for further functional analysis of the SRO gene family in maize, especially in abiotic stress responses.  相似文献   

18.
Genes representative of three gene classes encoding proteinase inhibitor proteins, with distinct spatial expression patterns, were isolated and characterized from Pisum.Under standard plant growth conditions, one class is expressed exclusively in seeds, whereas the other two make minor contributions to seed inhibitor proteins but are also expressed in other organs, predominantly in root endodermal and floral reproductive tissues. Two of the gene classes contain few genes and are genetically linked at the Tri locus, whereas the third class displays complex hybridization patterns to genomic DNA and maps to diverse genetic loci. Expression analysis of this last class suggests that only a small number of these genes are expressed. The quantitative effect of the Tri locus on root and floral inhibitor gene expression was examined in near-isogenic lines of pea. The proteins encoded by the three classes are all members of the same family (Bowman-Birk) of enzyme inhibitors but are distinct in terms of overall sequence, active site sequences and inhibitor function.  相似文献   

19.
20.
The α-zein super gene family encodes the most predominant storage protein in maize (Zea mays) endosperm. In maize inbred line B73, it consists of four gene families with 41 member genes. In this study, we combined quantitative real-time PCR and random clone sequencing to successfully profile the expression of α-zein super gene family during endosperm development. We found that only 18 of the 41 member genes were expressed, and their expression levels diverge greatly. At the gene family level, all families had characteristic “up-and-down” oscillating expressional patterns that diverged into two major groups. At the individual gene level, member genes showed dramatic divergence of expression patterns, indicating fast differentiation of their expression regulation. A comparison study among different inbred lines revealed significantly different expressed gene sets, indicating the existence of highly diverged haplotypes. Large gene families containing long gene clusters, e.g. z1A or z1C, mainly contributed the highly divergent haplotypes. In addition, allelic genes also showed significant divergence in their expressional levels. These results indicated a highly dynamic and fast evolving nature to the maize α-zein super gene family, which might be a common feature for other large gene families. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lingna Feng and Jia Zhu contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号