首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary Vibrio cholerae strains of the 01 serotype have been classified into three subclasses, Ogawa, Inaba and Hikojima, which are associated with the O-antigen of the lipopolysaccharide (LPS). The DNA encoding the biosynthesis of the O-antigen, the rfb locus, has been cloned and analysed (Manning et al. 1986; Ward et al. 1987). Transposon mutagenesis of the Inaba and Ogawa strains of V. cholerae, using Tn5 or Tn2680 allowed the isolation of a series of independent mutants in each of these serotypes. Some of the insertions were mapped to the rfb region by Southern hybridization using the cloned rfb DNA as a probe, confirming this location to be responsible for both O-antigen production and serotype specificity. The other insertions allowed a second region to be identified which is involved in V. cholerae LPS biosynthesis.  相似文献   

2.
Vibrio cholerae isolates recovered from cholera outbreaks in Bhind district of Madhya Pradesh and Delhi, Northern India were characterized. The O1 serogroup isolates from Bhind outbreak were of Inaba serotype whereas both Ogawa and Inaba serotypes were recovered from Delhi. PCR analysis revealed that only O1 serogroup V. cholerae isolates carried the virulence-associated genes like ctxA, tcpA, ace, and zot. Molecular typing by repetitive sequence based ERIC, VCR1, and VC1 PCR’s revealed similar DNA profile for both Inaba and Ogawa serotypes. A discrete VC1-PCR band identified among the El Tor strains had greater similarity (>97%) to the V. cholerae genome sequence and therefore has the potential to be used as a marker for the identification of the V. cholerae strains. Non-O1 strains recovered from Bhind region differed among themselves as well as from that of the O1 isolates. All the O1 serogroup isolates possessed SXT element and were uniformly resistant to the antibiotics nalidixic acid, polymyxin-B, furazolidone, cloxacilin, trimethoprim-sulfamethaxazole, and vibriostatic agent 0129. Inaba strains from both Delhi and Bhind differed from Ogawa strains by their resistance to streptomycin despite sharing similar DNA patterns in all the three rep-PCRs. Though Delhi and Bhind are separate geographical regions in Northern India, Inaba strains from both these places appear to be closely related owing to their similarity in antibiogram and genetic profile.  相似文献   

3.
Summary The O-antigen of the lipopolysaccharides of Vibrio cholerae 01 can exist in two forms termed Inaba and Ogawa. We used a complementation system to demonstrate that the Ogawa phenotype is dominant over the Inaba phenotype. By using a set of deletions affecting the Ogawa rfb genes, we identified two regions which are needed to confer the Ogawa phenotype. In vitro mutagenesis of the cloned Ogawa rfb genes resulted in the isolation of variants with the Inaba phenotype. The results are interpreted with respect to previous studies demonstrating interconversion between the two forms of the V. cholerae O-antigen.  相似文献   

4.
Aims: To investigate the molecular basis for serotype variation in Vibrio cholerae O1 and the genetic relatedness amongst different serotypes isolated from 2004 to 2008 in Iran. Methods and Results: Despite the presence of all three serotypes of V. cholerae O1 (Ogawa, Inaba and Hikojima) in Iran in the last decade, the Inaba strains have been the dominated serotype. Sequence analysis of wbeT determined only a single substitution of G for A at position 295 in all Inaba strains resulting in a replacement of serine to proline. No difference was found in the copy numbers and profile of IS1004 between the classical and El Tor V. cholerae O1 strains, supporting the clonality amongst the isolates obtained over 5 years in Iran. In addition, Southern blots of HpaII‐digested chromosomal DNAs of our Ogawa and Inaba isolates showed the presence of an incomplete copy of IS1004 for all isolates. Conclusions: IS1004 profiling can be a reliable method for analysis of clonal dissemination of V. cholerae. The results indicated that specific point mutation at a particular position within the wbeT of V. cholerae O1 strains in Iran may occur which, in turn, may result in serotype switching. Significance and Impact of the Study: Understanding the molecular basis for serotype conversion of V. cholerae and their genetic relatedness could give insights for the incoming cholera epidemic prediction and control.  相似文献   

5.
A 2.1-kb genomic region responsible for Ogawa serotype specificity of Vibrio cholerae 01 was identified by cosmid cloning and recombinant plasmid experiments. The plasmid carrying this region derived from Ogawa type Vibrio cholerae NIH 41 coded for a specific protein of 27 kD, and was found to convert serotype specificity from Inaba to Ogawa when co-introduced into the Escherichia coli cells harboring a cloned 20-kilobase genomic DNA fragment of Inaba type Vibrio cholerae 35A3.  相似文献   

6.
In October of 2010, an outbreak of cholera was confirmed in Haiti for the first time in more than a century. A single clone of toxigenic Vibrio cholerae O1 biotype El Tor serotype Ogawa strain was implicated as the cause. Five years after the onset of cholera, in October, 2015, we have discovered a major switch (ranging from 7 to 100%) from Ogawa serotype to Inaba serotype. Furthermore, using wbeT gene sequencing and comparative sequence analysis, we now demonstrate that, among 2013 and 2015 Inaba isolates, the wbeT gene, responsible for switching Ogawa to Inaba serotype, sustained a unique nucleotide mutation not found in isolates obtained from Haiti in 2012. Moreover, we show that, environmental Inaba isolates collected in 2015 have the identical mutations found in the 2015 clinical isolates. Our data indicate that toxigenic V. cholerae O1 serotype Ogawa can rapidly change its serotype to Inaba, and has the potential to cause disease in individuals who have acquired immunity against Ogawa serotype. Our findings highlight the importance of monitoring of toxigenic V. cholerae O1 and cholera in countries with established endemic disease.  相似文献   

7.
The resurgence of enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. The southern Indian state of Kerala is endemic to cholera. A V. cholerae strain isolated from the stool sample of a patient in Piravam, Kerala, South India, was analysed. However, this case occurred at a time not associated with cholera outbreaks, leading to concern among the State health officials. We compared the virulence potential of the isolate with that of the standard or reference strains, that have been widely used as positive control. The isolate was identified as V. cholerae O1 biotype El Tor serotype Inaba. The resistance pattern of the isolate to common antibiotics was examined and it was found to be multi-drug resistant in nature. The strain was analysed for the presence of the CTX genetic element, which encodes genes for cholera toxin and other important regulatory genes. It was found to be positive for all the genes tested. In Kerala, most of the cholera outbreaks have been reported to be caused by V. cholerae O1 El Tor belonging to Ogawa serotype. Interestingly, the V. cholerae strain isolated from this case has been found to be of Inaba serotype, which is rarely reported.  相似文献   

8.
T Ito  Y Ohshita  K Hiramatsu  T Yokota 《FEBS letters》1991,286(1-2):159-162
The gene encoding a protein of 27 kDa, which is specifically expressed in Vibrio cholerae of serotype Ogawa, was identified and its nucleotide sequence determined. The plasmid carrying this gene was found to convert serotype specificity from Inaba to Ogawa when introduced into the Escherichia coli DH5(pVCI112) cell which harbors a cloned 20-kilobase genomic DNA fragment of V. cholerae NIH35A3 and expresses the 01 antigen of Inaba serotype.  相似文献   

9.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   

10.
Vibrio cholerae causes cholera, an enteric disease of humans that is a worldwide problem. The O1 serogroup of Vibrio cholerae contains two predominant serotypes (Inaba and Ogawa) of LPS, a proven protective antigen for humans and experimental animals. We generated B‐cell hybridomas from mice immunized with either: (i) two doses of purified Inaba LPS; (ii) two doses of an Inaba hexasaccharide conjugate (terminal six perosamine bound to a protein carrier), (iii) four doses of purified Inaba LPS; or (iv) a low dose of purified Inaba LPS followed by a booster with the Inaba conjugate. We showed previously that the first and third immunization protocols induce vibriocidal antibodies, as does the fourth; the second protocol induces antibodies that bind Inaba and Ogawa LPS but are not vibriocidal. Anti‐LPS mAbs derived from hybridomas resulting from each immunization protocol were characterized for binding to Inaba and Ogawa LPS, their vibriocidal or protective capacity, and the variable heavy chain family they expressed. LPS immunogens selected different LPS‐specific B cells expressing six different Vh chain families. Protective and non‐protective mAbs could express variable regions from the same family. One mAb was specific for Inaba LPS, the other mAbs were cross‐reactive with both LPS serotypes. Sequence comparison suggests that the pairing of a specific light chain, somatic mutation, or the specific VDJ recombination can modulate the protective capacity of mAbs that express a common variable heavy chain family member.  相似文献   

11.
Using recombinant tetanus toxin HC fragment (rTT-HC) as carrier, we prepared multimeric bivalent immunogens featuring the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Ogawa, in combination with either the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Inaba, or a synthetic disaccharide tetrapeptide peptidoglycan fragment as adjuvant. The conjugation reaction was effected by squaric acid chemistry and monitored in virtually real time by SELDI-TOF MS. In this way, we could prepare well-defined immunogens with predictable carbohydrate–carrier ratio, whose molecular mass and the amount of each saccharide attached could be independently determined. The ability to prepare such neoglycoconjugates opens unprecedented possibilities for preparation of conjugate vaccines for bacterial diseases from synthetic carbohydrates.  相似文献   

12.
Non-pathogenic, environmental strain ofVibrio cholerae, ELTOR Ogawa EW6 carries a copy of the cholera toxin gene in its chromosome. Restriction enzyme digestion followed by Southern blot analysis revealed that the structure of the cholera toxin gene in this organism is different from that found in the virulent strains. The xbaI site which has been found to be conserved in the cholera toxin of the virulent strains examined so far, is absent here. Results of the RNA dot blot analysis indicated that the cholera toxin gene in EW6 is transcribed much less efficiently compared to the cholera toxin gene present in the virulent strainVibrio cholerae classical Inaba 569B.  相似文献   

13.

Background  

Over the last decade, cholera outbreaks in parts of Kenya have become common. Although a number of recent studies describe the epidemiology of cholera in Kenya, there is pauCity of information concerning the diversity and occurrence of mobile genetic elements in Vibrio cholerae strains implicated in these outbreaks. A total of 65 Vibrio cholerae O1 El Tor serotype Inaba isolated between 1994 and 2007 from various outbreaks in Kenya were investigated for mobile genetic elements including integrons, transposons, the integrating conjugative elements (ICEs), conjugative plasmids and for their genotypic relatedness.  相似文献   

14.
Chemical and serological studies were performed with the lipopolysaccharide (LPS) from Vibrio cholerae O144 (O144). The LPS of O144 contained D -glucose, D -galactose, L -glycero-D -manno-heptose, D -fructose, D -quinovosamine (2-amino-2,6-dideoxy-D -gluco-pyranose) and L -perosamine (4-amino-4,6-dideoxy-L -manno-pyranose). The perosamine, a major component sugar of the LPS from O144, was in an L -configuration, as is also the case in the LPS from V. cholerae O76 (O76), in contrast to the D -configuration of the perosamine in the LPS of V. cholerae O1. A structural analysis revealed that the O polysaccharide chain of the LPS from O144 is an α(1 → 2)-linked homopolymer of (R)-(-)-2-hydroxypropionyl-L -perosamine. The serological cross-reactivity between O144 and O76 was clearly revealed by cross-agglutination and cross-agglutinin absorption tests with whole cells, as well as by passive hemolysis tests with sheep red-blood cells that had been sensitized with the LPS from O144 and O76. In contrast, in passive hemolysis tests, the LPS of O144 did not cross-react serologically with the LPSs from other strains such as V. cholerae O1 (Ogawa and Inaba), V. cholerae O140, Vibrio bio-serogroup 1875 (Original and Variant) and Yersinia enterocolitica O9. The LPSs from these strains consist of O polysaccharide chains composed of α(1 → 2)-linked homopolymers of D -perosamine with various N-acyl groups, and they share the Inaba antigen factor C of V. cholerae O1 in common. The results obtained in this study demonstrate that the absolute configuration of the perosamine residue in homopolymers plays a very important role in the expression of the serological specificity of the Inaba antigen factor C of V. cholerae O1.  相似文献   

15.
We have previously described the cosmid cloning of the genes determining the biosynthesis of the Inaba and Ogawa O-antigens of the lipopolysaccharides of Vibrio cholerae O1 (Manning et al., 1986). By Southern hybridization analysis of chromosomal and cosmid DNA, and heteroduplex analysis between the clones we have been able to precisely define the region of contiguous chromosomal DNA in the vicinity of the O-antigen-encoding region. These data and comparison of end points of clones and of deletion derivatives demonstrate that at least 16 kb of a 19-kb SstI fragment is required to encode O-antigen biosynthesis. Expression of O-antigen is independent of the orientation of this SstI fragment with respect to cloning vectors suggesting that its regulatory region has been cloned intact. No detectable differences were observed in the restriction patterns of the Inaba and Ogawa coding regions implying that only minor changes are involved when serotype conversion (Inaba to Ogawa or vice versa) occurs. Bhaskaran [Ind. J. Med. Res. 47 (1959) 253-260] originally defined this region associated with O-antigen biosynthesis oag; however, to be consistent with other organisms [Hitchcock et al., J. Bacteriol. 166 (1986) 699-705], it is suggested this be changed to rfb.  相似文献   

16.
Strains of Vibrio cholerae O1 (Ogawa, Inaba) and non-O1 serogroups have been found to produce an elastolytic protease that can be detected on 0.3% elastin agar plates or in broth cultures. The elastase enzyme appears to be maximally expressed in late log phase (14–18 h postinoculation) and has optimum activity at a pH range between 7 and 8. Comparative studies indicate that more than 60% of V. cholerae strains analyzed quantitatively produce more elastase in broth (two- to fourfold higher) than other elastase-positive Vibrio species such as Vibrio vulnificus. The V. cholerae elastase enzyme was not inhibited by trypsin, serine-protease, or thiol-protease inhibitors, but was inhibited by phosphoramidon. Ultrafiltration studies indicate the V. cholerae elastase enzyme has a molecular weight >30,000, and a 34K protein with possible elastase activity has been detected by SDS-PAGE for one non-O1 isolate (strain 2396). Cumulative results suggest that the V. cholerae elastase is probably a member of the N-type metalloprotease family and shares similar properties with other elastase enzymes described for pathogenic and nonpathogenic species in this genus. Received: 26 February 1999 / Accepted: 29 March 1999  相似文献   

17.
Multiple diarrheagenic enteric bacterial infections cause global morbidity and mortality. A combination vaccine is needed to combat different diarrhea-causing organisms. In our present work, we formulated a combination of antigens from three different diarrheagenic Escherichia coli strains and three different Vibrio cholerae strains. We demonstrated that our newly formulated combination immunogen was able to raise species-specific immunogenicity. This formulation also gave protection against different diarrheagenic E. coli strains in the removable intestinal tie-adult rabbit diarrhea model. However, protective efficacy was not found against the V. cholerae El Tor Ogawa Haitian variant, but challenged with V. cholerae El Tor Inaba or O139 showed protection in rabbits.This is the first report of a single formulated nonliving heat-killed combination immunogen from different diarrheagenic E. coli and V. cholerae that could bestow protection against different bacteria in an animal model.  相似文献   

18.
Monoclonal antibodies with group and type specificity for lipopolysaccharide antigens were used in combination with protein A-colloidal gold labeling and transmission electron microscopy to demonstrate the presence of lipopolysaccharide antigens on both the sheathed flagellum and the cell surface of Inaba and Ogawa strains of Vibrio cholerae O:1. Labeling was associated with the sheath of the flagellum rather than the core, and flagellar cores were not labeled. Flagellum and cell shared a common set of lipopolysaccharide antigens characteristic of the strain serotype.  相似文献   

19.
Brief treatment, with 10 M hydrochloric acid, of the lipopolysaccharides of Vibrio cholerae and related organimms led to the release of 4-amino-4,6-dideoxy-D-mannose (D-perosamine) 4-amino-4-deoxy-L-arabinose. These sugars are highly unstable and undergo complex changes in neutral and basic media.Of the strains examined, the lipopolysaccharides from representatives of the Inaba group contain only D-perosamine, while those of the Ogawa biotype have 4-amino-4-deoxy-L-arabinose as an additional component. The other Vibrios produce lipopolysaccharides which lack these sugars.  相似文献   

20.
Fifty-seven new O serogroups have been added to the existing serotyping scheme ofVibrio cholerae to extend the scheme from O84 to O140. Prominent new additions were serogroups O139 and O140. The reference strain of O139 was isolated from a patient from an epidemic of cholera-like diarrhea in Madras, Southern India. Serogroup O140 was assigned to a group ofV. cholerae strains which were tentatively named as the Hakata serogroup and which possessed the C (Inaba) factor but not the B (Ogawa) nor the A (major specific antigen of O1 serogroup ofV. cholerae). As all antisera against reference strains ofV. cholerae contained some amount of antibody to the rough (R) antigen, all diagnostic O antisera must be absorbed with the reference rough strain, CA385.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号