首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
The ovary contains a pool of primordial follicles containing oocytes arrested in meiosis that are the source of developing follicles for the female. Growth and differentiation factor-9 (GDF-9) is a member of the transforming growth factor beta superfamily of growth factors, and follicles of GDF-9 knockout mice arrest in the primary stage of development. The effect of GDF-9 treatment on the primordial to primary follicle transition and on subsequent follicle progression was examined using a rat ovary organ culture system. Ovaries from 4-day-old rats were cultured under serum-free conditions in the absence or presence of growth factors. GDF-9 treatment caused a decrease in the proportion of stage 1 early primary follicles and a concomitant increase in the proportion of stage 2 mature primary follicles. GDF-9 did not effect primordial follicles or stage 0 to stage 1 follicle transition. GDF-9 also did not influence stage 3 or 4 secondary follicle numbers. Isolated antral follicle granulosa and theca cell cultures were used to analyze the actions of GDF-9. GDF-9 treatment did not directly influence either granulosa or theca cell proliferation. The ability of GDF-9 to influence the expression of another growth factor was examined. GDF-9 treatment increased kit ligand (KL) mRNA expression in bovine granulosa cells after 2 days of culture. Ovaries from 4-day-old rats were also cultured with or without GDF-9 treatment, and total ovary expression of KL mRNA was increased by GDF-9. In summary, GDF-9 was found to promote the progression of early primary follicle development but did not influence primordial follicle development. The actions of GDF-9 on specific stages of follicle development may in part be mediated through altering the expression of KL.  相似文献   

4.
5.
The inability to obtain in vivo samples of antral follicle wall layers without removing the ovaries or sacrificing the animals has limited more in‐depth studies on folliculogenesis. In this study, a novel ultrasound‐guided follicle wall biopsy (FWB) technique was used to obtain in vivo follicle wall layers and follicular fluid samples of growing antral follicles. The expression of proliferative, hormonal, angiogenic, and pro‐/antiapoptotic receptors and proteins in the follicular wall among three follicle classes were compared during the spring transitional anovulatory (SAN) and spring ovulatory (SOV) seasons in mares. The main findings observed in the granulosa, theca interna, and/or all follicle layers during the SOV season compared with the SAN season were (a) small‐sized follicles (10–14 mm) had greater epidermal growth factor receptor (EGFR) and Bcl‐2 expression; (b) medium‐sized follicles during the expected deviation/selection diameter (20–24 mm) had greater expression of EGFR, Ki‐67, luteinizing hormone receptor (LHR), and Bcl‐2; and (c) dominant follicles (30–34 mm) had greater EGFR, Ki‐67, vascular endothelial growth factor, LHR, and Bcl‐2 expression. Estradiol related receptor alpha expression and intrafollicular estradiol concentration increased, along with an increase in follicle diameter in both seasons. In this study, the application of the FWB technique allowed a direct comparison of different receptors’ expression among follicles in different stages of development and between two seasons using the same individuals, without jeopardizing their ovarian function. The successful utilization of the FWB technique and the mare as an experimental animal offer a great combination for future folliculogenesis studies on mechanisms of follicle selection, development, and ovulation in different species, including women.  相似文献   

6.
7.
The aims of this study were to investigate steady‐state level of Kit Ligand (KL) mRNA and its effects on in vitro survival and growth of caprine preantral follicles. RT‐PCR was used to analyze caprine steady‐state level of KL mRNA in primordial, primary, and secondary follicles, and in small (1–3 mm) and large (3–6 mm) antral follicles. Furthermore, ovarian fragments were cultured for 1 or 7 days in Minimal Essential Medium (MEM+) supplemented with KL (0, 1, 10, 50, 100, or 200 ng/ml). Noncultured (control) and cultured fragments were processed for histology and transmission electron microscopy (TEM). RT‐PCR demonstrated an increase in steady‐state level of KL mRNA during the transition from primary to secondary follicles. Small antral follicles had higher steady‐state levels of KL mRNA in granulosa and theca cells than large follicles. After 7 days, only 50 ng/ml of KL had maintained the percentage of normal follicles similar to control. After 1 day, all KL concentrations reduced the percentage of primordial follicles and increased the percentage of growing follicles. KL at 10, 50, 100, or 200 ng/ml increased primary follicles, compared to MEM+ after 7 days. An increase in oocyte and follicular diameter was observed at 50 ng/ml of KL. TEM confirmed ultrastructural integrity of follicles after 7 days at 50 ng/ml of KL. In conclusion, the KL mRNAs were detected in all follicular categories. Furthermore, 50 ng/ml of KL maintained the integrity of caprine preantral follicle cultured for 7 days and stimulated primordial follicle activation and follicle growth. Mol. Reprod. Dev. 77: 231–240, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
In the mammalian ovary, FGF10 is expressed in oocytes and theca cells and is a candidate for paracrine signaling to the developing granulosa cells. To gain insight into the participation of FGF10 in the regulation of fetal folliculogenesis, we assessed mRNA expression patterns of FGF10 and its receptors, FGFR1B and FGFR2B, in relation to fetal follicle dynamics and localized FGF10 protein in bovine fetal ovaries at different ages. Primordial, primary, secondary, and antral follicles were first observed on Days 75, 90, 150, and 210 of gestation, respectively. The levels of GDF9 and BMP15 mRNA, markers for primordial and primary follicles, respectively, increased during fetal ovary development in a consistent manner with fetal follicle dynamics. CYP17A1 mRNA abundance increased from Day 60 to Day 75 and then from Day 120 to Day 150, coinciding with the appearance of secondary follicles. FGF10 mRNA abundance increased from Day 90, and this increase was temporally associated with increases in FGFR1B mRNA abundance and in the population of primary follicles. In contrast, FGFR2B mRNA expression was highest on Day 60 and decreased thereafter. FGF10 protein was localized to oogonia and oocytes and surrounding granulosa cells at all fetal ages. The present data suggest a role for FGF10 in the control of fetal folliculogenesis in cattle.  相似文献   

9.
Factors that control recruitment of theca cells from ovarian stromal-interstitial cells are important for early follicle development in the ovary. During recruitment, theca cells organize into distinct layers around early developing follicles and establish essential cell-cell interactions with granulosa cells. Recruitment of theca cells from ovarian stromal stem cells is proposed to involve cellular proliferation, as well as induction of theca cell-specific functional markers. Previously, the speculation was made that a granulosa cell-derived "theca cell organizer" is involved in theca cell recruitment. Granulosa cells have been shown to produce kit-ligand/stem cell factor (KL). KL is known to promote stem cell proliferation and differentiation in a number of tissues. Therefore, the hypothesis was tested in the current study that granulosa cell-derived KL may help recruit theca cells from undifferentiated stromal stem cells during early follicle development. The actions of KL were examined using adult bovine ovarian fragment organ culture and isolated ovarian stromal-interstitial cells. In organ culture KL significantly increased the number of theca cell layers around primary follicles. Experiments using purified stromal-interstitial cell cultures showed that KL stimulated ovarian stromal cell proliferation in a dose-dependent manner. Stromal cell differentiation into theca cells was analyzed by the induction of theca cell functional markers (i.e., androstenedione and progesterone production). Bovine ovarian stromal cells produced low levels of androstenedione (5-40 ng/microg DNA) and progesterone (5-30 ng/microg DNA) in vitro that were approximately 20-fold lower than theca cells under similar conditions. Treatment with KL did not affect ovarian stromal cell androstenedione or progesterone production. Interestingly, hormones such as estrogen and hCG did stimulate stromal cell steroid production. The results in this study suggest that granulosa cell-derived KL appears to promote the formation of theca cell layers around small (i.e., primary) ovarian follicles. KL directly stimulated ovarian stromal cell proliferation but alone did not induce functional differentiation (i.e., high steroid production). Therefore, KL is proposed to promote early follicle development by inducing proliferation and organization of stromal stem cells around small follicles. Observations suggest that KL may act as a granulosa-derived "theca cell organizer" to promote stem cell recruitment of ovarian stromal cells in a manner similar to the way that KL promotes hematopoietic and lymphoid stem cells in bone marrow and the thymus.  相似文献   

10.
Ovarian follicular development, follicle selection, and the process of ovulation remain poorly understood in most species. Throughout reproductive life, follicle fate is balanced between growth and apoptosis. These opposing forces are controlled by numerous endocrine, paracrine, and autocrine factors, including the ligands represented by the transforming growth factor beta (TGFbeta) superfamily. TGFbeta, activin, inhibin, bone morphometric protein (BMP), and growth differentiation factor 9 (GDF-9) are present in the ovary of many animals; however, no comprehensive analysis of the localization of each ligand or its receptors and intracellular signaling molecules during folliculogenesis has been done. The domestic cat is an ideal model for studying ovarian follicle dynamics due to an abundance of all follicle populations, including primordial stage, and the amount of readily available tissue following routine animal spaying. Additionally, knowledge of the factors involved in feline follicular development could make an important impact on in vitro maturation/in vitro fertilization (IVM/IVF) success for endangered feline species. Thus, the presence and position of TGFbeta superfamily members within the feline ovary have been evaluated in all stages of follicular development by immunolocalization. The cat inhibin alpha subunit protein is present in all follicle stages but increases in intensity within the mural granulosa cells in large antral follicles. The inhibin betaA and betaB subunit proteins, in addition to the activin type I (ActRIB) and activin type II receptor (ActRIIB), are produced in primordial and primary follicle granulosa cells. Additionally, inhibin betaA subunit is detected in the theca cells from secondary through large antral follicle size classes. GDF-9 is restricted to the oocyte of preantral and antral follicles, whereas the type II BMP receptor (BMP-RII) protein is predominantly localized to primordial- and primary-stage follicles. TGFbeta1, 2, and 3 ligand immunoreactivity is observed in both small and large follicles, whereas the TGFbeta type II receptor (TGFbeta RII) is detected in the oocyte and granulosa cells of antral follicles. The intracellular signaling proteins Smad2 and Smad4 are present in the granulosa cell cytoplasm of all follicle size classes. Smad3 is detected in the granulosa cell nucleus, the oocyte, and the theca cell nucleus of all follicle size classes. These data suggest that the complete activin signal transduction pathway is present in small follicles and that large follicles primarily produce the inhibins. Our data also suggest that TGFbeta ligands and receptors are colocalized to large antral follicles. Taken together, the ligands, receptors, and signaling proteins for the TGFbeta superfamily are present at distinct points throughout feline folliculogenesis, suggesting discrete roles for each of these ligands during follicle maturation.  相似文献   

11.
12.
In order to better understand the pituitary regulation of follicular growth in the domestic cat, follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors (R) were localized and quantified in relation to follicle diameter and atresia using in situ ligand binding on ovarian sections. Expression of FSHR was homogeneous and restricted to follicle granulosa cells from the early antral stage onwards, whereas expression of LHR was heterogeneous on theca cells of all follicles from the early antral stage onward, and homogeneous on granulosa cells of healthy follicles larger than 800 microm in diameter and in corpora lutea. LHR were also widely expressed as heterogeneous aggregates in the ovarian interstitial tissue. Atretic follicles exhibited significantly reduced levels of both FSHR and LHR on granulosa cells, compared with healthy follicles whatever the follicular diameter, whereas levels of LHR on theca cells were lower only for atretic follicles larger than 1,600 microm in diameter. In healthy follicles, levels of FSHR and LHR in all follicular compartments increased significantly with diameter. Although generally comparable to that observed in other mammals, the expression pattern of gonadotropin receptors in the cat ovary is characterized by an early acquisition of LHR on granulosa cells of growing follicles and islets of LH binding sites in the ovarian interstitial tissue.  相似文献   

13.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors.  相似文献   

14.
The extracellular matrix (ECM) plays a prominent role in ovarian function by participating in processes such as cell migration, proliferation, growth, and development. Although some of these signaling processes have been characterized in the mouse, the relative quantity and distribution of ECM proteins within developing follicles of the ovary have not been characterized. This study uses immunohistochemistry and real-time PCR to characterize the ECM components type I collagen, type IV collagen, fibronectin, and laminin in the mouse ovary according to follicle stage and cellular compartment. Collagen I was present throughout the ovary, with higher concentrations in the ovarian surface epithelium and follicular compartments. Collagen IV was abundant in the theca cell compartment with low-level expression in the stroma and granulosa cells. The distribution of collagen was consistent throughout follicle maturation. Fibronectin staining in the stroma and theca cell compartment increased throughout follicle development, while staining in the granulosa cell compartment decreased. Heavy staining was also observed in the follicular fluid of antral follicles. Laminin was localized primarily to the theca cell compartment, with a defined ring at the exterior of the follicular granulosa cells marking the basement membrane. Low levels of laminin were also apparent in the stroma and granulosa cell compartment. Taken together, the ECM content of the mouse ovary changes during follicular development and reveals a distinct spatial and temporal pattern. This understanding of ECM composition and distribution can be used in the basic studies of ECM function during follicle development, and could aid in the development of in vitro systems for follicle growth.  相似文献   

15.
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P<0.05) granulosa cell progesterone production and theca cell androstenedione production but did not affect (P>0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.  相似文献   

16.
17.
To investigate the interrelationship of inhibin alpha and growth differentiation factor 9 (GDF9) during early folliculogenesis, we generated mice lacking both inhibin alpha and GDF9. Our findings on these Inha Gdf9 double-mutant mice are as follows: 1). females develop ovarian tumors and a cachexia-like wasting syndrome, resembling mice lacking inhibin alpha alone. This indicates that the granulosa cells are competent to proliferate despite the lack of GDF9; 2). follicular development progresses to multiple-layer follicle stages before tumorigenesis. This demonstrates that the up-regulation of inhibin alpha in the Gdf9 knockout ovary directly prevents the proliferation of the granulosa cells at the primary follicle stage, an effect that is released in the absence of inhibin alpha; 3). a morphological theca forms around the preantral follicles with no detectable selective theca markers [i.e. 17alpha-hydroxylase (Cyp17), LH receptor (Lhr), and Kit]. These results indicate that the theca recruitment can occur independently of GDF9, but the differentiation of thecal cells is blocked; and 4). inhibin/activin subunits betaA, betaB, and Kit ligand (Kitl) mRNA are highly up-regulated, suggesting that the increased activins and KITL play functional roles in early folliculogenesis. Thus, GDF9 appears to function indirectly to regulate early granulosa cell proliferation and theca recruitment in vivo.  相似文献   

18.
CD8+ cytotoxic T lymphocytes (CTLs) are critical mediators of anti‐tumor immunity, and controlling the mechanisms that govern CTL functions could be crucial for enhancing patient outcome. Previously, we reported that hepatocyte growth factor (HGF) limits effective murine CTL responses via antigen‐presenting cells. Here, we show that a fraction of murine effector CTLs expresses the HGF receptor c‐Met (c‐Met+ CTLs). Phenotypic and functional analysis of c‐Met+ CTLs reveals that they display enhanced cytolytic capacities compared to their c‐Met? CTL counterparts. Furthermore, HGF directly restrains the cytolytic function of c‐Met+ CTLs in cell‐mediated cytotoxicity reactions in vitro and in vivo and abrogates T‐cell responses against metastatic melanoma in vivo. Finally, we establish in three murine tumor settings and in human melanoma tissues that c‐Met+ CTLs are a naturally occurring CD8+ T‐cell population. Together, our findings suggest that the HGF/c‐Met pathway could be exploited to control CD8+ T‐cell‐mediated anti‐tumor immunity.  相似文献   

19.
Poliovirus receptor (Pvr), erythrocyte protein band 4.1-like 3 (Epb4.1l3), regulator of G-protein signaling 11 (Rgs11), and oxytocin receptor (Oxtr) expression were quantified in in vitro- and in vivo-grown mouse follicles. The expression of all genes was increased during antral growth in in vitro-grown cumulus cells, whereas only Rgs11 and Oxtr were increased and Pvr and Epb4.1l3 were decreased in in vivo grown cumulus cells. In vivo mural granulosa cells showed the highest expression of Pvr, Rgs11, and Oxtr. The in vitro granulosa + theca compartment responded to human chorionic gonadotropinduring early luteinization by either an upregulation (Pvr, Oxtr) or downregulation (Epb41l3, Rgs11). Oocytes expressed Epb4.1l3, not Rgs11, and Pvr only in in vitro-grown oocytes. Translation into protein was confirmed for Epb4.1l3 in in vitro-grown follicles and in vivo-grown cumulus-oocyte complexes. Protein 4.1B was present during antral growth in cumulus, granulosa cells, and oocytes. Hypothetical functions of Epb4.1l3 and Pvr involve cell adhesion regulation and Rgs11 could be involved in cAMP production in the follicle. Oxtr is known to be important during and after the ovulatory stimulus, but, as in bovine, was also regulated during folliculogenesis. High expression of Pvr and Epb4.1l3 with culture duration in cumulus cells might mark inappropriate differentiation into a mural granulosa-like cell type and function as negative follicle development marker. Rgs11 and Oxtr are both in vivo and in vitro upregulated in cumulus cells during antral follicle growth and might be considered positive markers for follicle development.  相似文献   

20.
Of all the stages of mammalian folliculogenesis, the primordial to primary follicle transition is the least understood. In order to gain new insights into this process, we have conducted a comprehensive morphological, morphometric and molecular study of ovarian organisation and early follicle development in the rabbit. The structure of ovaries collected from rabbits aged from 2–12 weeks (a period encompassing primordial follicle formation, activation and the first wave of folliculogenesis in this species) has been analysed by light microscopy and the follicles present have been measured and scored for their developmental stage. To establish useful molecular markers of activation, we have further classified follicles according to their expression of the proliferative marker, proliferating cell nuclear antigen, and the zona pellucida protein, ZPB. The activation of primordial follicles is initiated immediately following their formation in the rabbit ovary and is characterised by oocyte growth, granulosa cell morphogenesis and increased granulosa cell mitosis. Enhanced ZPB protein expression at the oolemma is also associated with follicle activation and development. Few primordial follicles in the juvenile rabbit ovary are lost by atresia, as assessed by the TUNEL assay. The appearance of apoptotic granulosa cells is however coincident with the development of antral follicles. This study thus describes the temporal and spatial regulation of early follicular development in the post-natal rabbit ovary and, for the first time, shows that the primordial to primary transition in the juvenile rabbit is a highly ordered process occurring within quantifiable parameters.K.J.H. was supported by the Pest Animal Control CRC and Post Graduate scholarships from the Australian National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号