首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Insulin‐like growth factor binding protein‐6 (IGFBP‐6) inhibits the tumorigenic properties of IGF‐II‐dependent cancer cells by directly inhibiting IGF‐II actions. However, in some cases, IGFBP‐6 is associated with increased cancer cell tumorigenicity, which is unlikely to be due to IGF‐II inhibition. The mechanisms underlying the contradictory actions of IGFBP‐6 remain unclear. We recently generated an IGFBP‐6 mutant that does not bind IGFs (mIGFBP‐6) to address this issue. Although RD rhabdomyosarcoma cells express IGF‐II, we previously showed that mIGFBP‐6 promoted migration through an IGF‐independent, p38‐dependent pathway. We further studied the role of MAP kinases in IGFBP‐6‐induced migration of Rh30 rhabdomyosarcoma cells, which also express IGF‐II. In these cells, mIGFBP‐6 induced chemotaxis rather than chemokinesis. Both wild‐type (wt) and mIGFBP‐6 transiently induced phosphorylation of ERK1/2 and JNK1, but not p38. Inhibition of ERK1/2 phosphorylation completely prevented mIGFBP‐6‐induced ERK1/2 activation and cell migration, whereas a JNK inhibitor partially prevented migration. Interestingly, p38 pathway inhibition completely prevented mIGFBP‐6‐induced ERK1/2 and JNK1 activation and migration despite mIGFBP‐6 not activating p38. Furthermore, blocking the ERK1/2 pathway also inhibited mIGFBP‐6‐induced JNK1 activation. In contrast, IGFBP‐6 had no effect on Akt phosphorylation and an Akt inhibitor had no effect on migration. These results indicate that IGFBP‐6 promotes Rh30 rhabdomyosarcoma chemotaxis in an IGF‐independent manner, and that MAPK signaling pathways and their cross‐talk play an important role in this process. Therefore, besides decreasing Rh30 cell proliferation by inhibiting IGF‐II, IGFBP‐6 promotes their migration via a distinct pathway. Understanding these disparate actions of IGFBP‐6 may lead to the development of novel cancer therapeutics. J. Cell. Physiol. 224: 636–643, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
TNF‐α and IGF‐I exert opposing effects on mammary epithelial cell (MEC) growth and survival. However, both increase IGF binding protein‐3 (IGFBP‐3) expression, a multifunctional protein that plays both IGF‐dependent as well as independent roles in these processes. We have reported that IGF‐I utilizes the PI3‐K and MAPK pathways to induce IGFBP‐3 expression in bovine MEC. Here we show that TNF‐α requires the SAPK pathway p38, but not JNK, to induce IGFBP‐3 expression. Contrary to reports in cancer cell lines, TNF‐α retained its ability to decrease DNA synthesis in cells transfected with IGFBP‐3 siRNA. It also retained its ability to inhibit IGF‐I‐stimulated DNA synthesis in these cells. In contrast, the ability of IGF‐I to increase DNA synthesis was attenuated with IGFBP‐3 knockdown. IGFBP‐3 knockdown also decreased basal DNA synthesis, indicating that a certain level of IGFBP‐3 may be required for cell proliferation. While TNF‐α alone failed to induce apoptosis, it increased cell death when added with the JNK agonist anisomycin (ANS). TNF‐α and ANS were unable to induce apoptosis when either IGFBP‐3 or JNK‐2 was knocked‐down, suggesting that both JNK and IGFBP‐3 may interact with a downstream molecule central to apoptosis. There are reports that IGFBP‐3 promotes either cell proliferation or apoptosis in different cell systems. However, this is the first report that endogenous IGFBP‐3 is required for the action of both stimulatory and inhibitory factors within the same cell line. Therefore, the actions of IGFBP‐3 are not pre‐determined, but instead governed by cellular context such as JNK activation. J. Cell. Physiol. 220: 182–188, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Insulin‐like growth factor‐I (IGF‐I) is a low molecular weight peptide that mediates the cell proliferating actions of growth hormone. Evidence exists indicating that IGF‐I is produced by various cell types and this growth factor has been implicated in a variety of reproductive processes. To investigate the effect of IGF‐I over‐expression on reproductive systems, we generated three independent lines of transgenic mice harbouring a human IGF‐I cDNA (hIGF‐I) under the control of a Cytomegalovirus immediate early (CMV) promoter. The CMV promoter was used in an attempt to direct expression of IGF‐I into a variety of tissues both reproductive and non‐reproductive. Yet expression of the foreign hIGF‐I gene, determined by Northern blot, was found to occur only in the testicular tissues of the male mice, apparently due to methylation of the transgene in all the tissues tested except the testes, which demonstrate transgene hypomethylation. Evaluation of the transgene expression during testicular development revealed that expression begins between 10 and 15 days of development, coinciding with the appearance of the zygotene and pachytene primary spermatocytes during early spermatogenesis, therefore indicating germ line expression of the transgene. Extensive study of the CMV‐hIGF‐I transgenic lines of mice has revealed that the effects of the transgene expression do not extend beyond the testicular tissues. No significant differences (P > 0.05) in the IGF‐I serum levels, growth rates, or testicular histology have been observed between transgenic and non‐transgenic male siblings. The ability of transgenic males to produce offspring also appears unaffected. Evaluation of the IGF binding protein (IGFBP) levels in the testicular tissues of CMV‐hIGF‐I transgenic mice by Western ligand blot revealed an increase in the concentration of testicular proteins with molecular weights corresponding to IGFBP‐2 and IGFBP‐3. These results suggest that the testicular over‐expression of IGF‐I induces increased IGFBP localization in this tissue. Inhibition of IGF activity by the IGFBPs would explain the lack of a dramatic physiological effect in the CMV‐hIGF‐I transgenic mice, despite the presence of elevated testicular IGF‐I. The observation that testis specific IGF‐I overexpression induces localization of IGFBPs in this tissue confirms the existence of a well regulated testicular IGF system and supports the convention that this growth factor plays an important role in testicular function. Mol. Reprod. Dev. 54:32–42, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Objective: Different facts suggest that the insulin growth factor (IGF)/ insulin growth factor‐binding protein (IGFBP) system may be regulated by factors other than growth hormone. It has been proposed that, in healthy subjects, free IGF‐I plays a role in glucose metabolism. The role of free IGF‐I in glucose homeostasis in insulin resistance is poorly understood. This study was undertaken to evaluate the effects of acute changes in plasma glucose and insulin levels on free IGF‐I and IGFBP‐1 in obese and non‐obese subjects. Research Methods and Procedures: Nineteen lean and 24 obese subjects were investigated. A frequently sampled intravenous glucose tolerance test was performed. Free IGF‐I and IGFBP‐1 were determined at 0, 19, 22, 50, 100, and 180 minutes. Results: Basal free IGF‐I levels tended to be higher and IGFBP‐1 lower in obese than in lean subjects. IGFBP‐1 levels inversely correlated with basal insulin concentration. To determine the effects of insulin on the availability of free IGF‐I and IGFBP‐1, changes in their plasma concentrations were measured during a frequently sampled intravenous glucose tolerance test. After insulin administration, a significant suppression of free IGF‐I at 22% was observed in lean subjects. In contrast, plasma‐free IGF‐I levels remained essentially unchanged in the obese group. The differences between both groups were statistically significant at 100 minutes (p < 0.01) and 180 minutes (p < 0.05). Serum IGFBP‐1 was suppressed to a similar extent in both groups. Discussion: These data suggest that the concentrations of free IGF‐I and IGFBP‐1 are differentially regulated by obesity. Obesity‐related insulin resistance leads to unsuppressed free IGF‐I levels.  相似文献   

5.
Differentiation and restricted invasion/migration of trophoblast cells are crucial for feto‐maternal communication in the synepitheliochorial placenta of cattle. EGF is expressed in the bovine placenta and likely regulates these cell properties. As cell migration and motility rely on the degradation of extracellular matrix we hypothesize that EGF is involved in the regulation of the MMP‐9/TIMP‐1 balance and thus could influence trophoblast migration, tissue remodeling, and the release of the fetal membranes after parturition. The aim of this in vitro study was to examine EGF‐mediated effects on cell motility, proliferation, and MMP‐9 and TIMP‐1 expression in cultured bovine trophoblast cells. We used a trophoblast cell line (F3) derived from bovine placentomes to examine the influence of EGF on MMP‐9 and TIMP‐1 expression by semiquantitative RT‐PCR and MMP activity by zymography. Migration assays were performed using a Boyden chamber and cell motility was measured by time‐lapse analyses. To identify the involved signaling cascades, phosphorylation of mitogen‐activated protein kinase (MAPK) 42/44 and Akt was detected by Western blot. EGF treatment increased both the abundance of MMP‐9 and TIMP‐1 mRNAs and the proteolytic activity of MMP‐9. Furthermore, EGF stimulated proliferation and migration of F3 cells. Addition of specific inhibitors of MAPK (PD98059) and/or PI3K (LY294002) activation abolished or reduced EGF‐induced effects in all experiments. In conclusion, EGF‐mediated effects stimulate migration and proliferation of bovine trophoblast cells and may be involved in bovine placental tissue remodeling and postpartum release of fetal membranes. Mol. Reprod. Dev. 77: 622–629, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
Mammary epithelial cell (MEC) number is an important determinant of milk production in lactating dairy cows. IGF‐I increases IGF binding protein‐3 (IGFBP‐3) production in these cells, which plays a role in its ability to enhance proliferation. In the present study, we show that the apoptotic factor anisomycin (ANS) also increases IGFBP‐3 mRNA and protein in a dose‐ and concentration‐dependent manner that mirrors activation of caspase‐3 and ‐7, with significant increases in both IGFBP‐3 protein and caspase activation observed by 3 h. Knock‐down of IGFBP‐3 with small interfering (si) RNA attenuated the ability of ANS to induce apoptosis, while knock‐down of IGFBP‐2, the other major IGFBP made by bovine MEC, had no effect. Reducing IGFBP‐3 also decreased the ability of ANS to induce mitochondrial cytochrome c release, indicating its involvement in the intrinsic apoptotic pathway. In contrast, transfection with IGFBP‐3 in the absence of ANS failed to induce apoptosis. Since both the mitogen IGF‐I and the apoptotic inducer ANS increase IGFBP‐3 production in MEC, we proposed that cellular localization might determine IGFBP‐3 action. While both IGF‐I and ANS stimulated the release of IGFBP‐3 into conditioned media, only ANS induced nuclear localization of IGFBP‐3. A pan‐caspase inhibitor had no effect on ANS‐induced nuclear localization of IGFBP‐3, indicating that nuclear entry of IGFBP‐3 precedes caspase activation. Treatment with IGF‐I had no effect on ANS‐induced nuclear localization, but did block ANS‐induced apoptosis. In summary, our data indicate that IGFBP‐3 plays a role in stress‐induced apoptosis that may require nuclear localization in non‐transformed MEC. J. Cell. Physiol. 228: 734–742, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Insulin-like growth factor-binding protein-1 (IGFBP-1) binds to insulin-like growth factors (IGFs) and has been shown to inhibit or stimulate cellular responses to IGF-I in vitro. This capacity of IGFBP-1 to inhibit or stimulate IGF-I actions correlates with its ability to form stable high molecular weight multimers. Since the ability of some proteins to polymerize is dependent upon transglutamination, we determined if tissue transglutaminase could catalyze this reaction and the effect of polymerization of IGFBP-1 upon IGF-I action. Following incubation with pure tissue transglutaminase (Tg), IGFBP-1 formed covalently linked multimers that were stable during SDS-polyacrylamide gel electrophoresis using reducing conditions. Dephosphorylated IGFBP-1 polymerized more rapidly and to a greater extent compared with native (phosphorylated) IGFBP-1. Exposure to IGF-I stimulated transglutamination of IGFBP-1 in vitro. An IGFBP-1 mutant in which Gln(66)-Gln(67) had been altered to Ala(66)-Ala(67) (Q66A/Q67A) was relatively resistant to polymerization by Tg compared with native IGFBP-1. Tg localized in fibroblast membranes was also shown to catalyze the formation of native IGFBP-1 multimers, however, Q66A/Q67A IGFBP-1 failed to polymerize. Although the mutant IGFBP-1 potently inhibited IGF-I stimulated protein synthesis in pSMC cultures, the same concentration of native IGFBP-1 had no inhibitory effect. The addition of higher concentrations of native IGFBP-1 did inhibit the protein synthesis response, and this degree of inhibition correlated with the amount of monomeric IGFBP-1 that was present. In conclusion, IGFBP-1 is a substrate for tissue transglutaminase and Tg leads to the formation of high molecular weight covalently linked multimers. Polymerization is an important post-translational modification of IGFBP-1 that regulates cellular responses to IGF-I.  相似文献   

10.
The somatotropic axis, which includes growth hormone, insulin‐like growth factor (IGF)‐I, and IGF binding proteins (IGFBP), is involved in the regulation of growth and metabolism. Measures of the somatotropic axis can be predictive of nutritional status and growth rate that can be utilized to identify nutritional status of individual animals. Before the somatotropic axis can be a predictive tool, concentrations of hormones of the somatotropic axis need to be established in healthy individuals. To begin to establish these data, we quantified IGF‐I, IGFBP‐2, and IGFBP‐3 in males and females of eight threatened hoofstock species at various ages. Opportunistic blood samples were collected from Bos javanicus (Java banteng), Tragelaphus eurycerus isaaci (bongo), Gazella dama ruficollis (addra gazelle), Taurotragus derbianus gigas (giant eland), Kobus megaceros (Nile lechwe), Hippotragus equines cottoni (roan antelope), Ceratotherium simum simum (white rhinoceros), and Elephas maximus (Asian elephant). Serum IGF‐I and IGFBPs were determined by radioimmunoassay and ligand blot, respectively. Generally, IGF‐I and IGFBP‐3 were greater in males, and IGFBP‐2 was greater in females. In banteng (P = 0.08) and male Nile lechwe (P<0.05), IGF‐I increased with age, but decreased in rhinoceros (P = 0.07) and female Nile lechwe (P<0.05). In banteng, IGFBP‐3 was greater (P<0.01) in males. In elephants (P<0.05) and antelope (P = 0.08), IGFBP‐2 were greater in females. Determination of concentrations of hormones in the somatotropic axis in healthy animals makes it possible to develop models that can identify the nutritional status of these threatened hoofstock species. Zoo Biol 30:275–284, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
Aims of the study were to measure insulin‐like growth factor‐binding protein‐2 (IGFBP‐2) expression by abdominal subcutaneous adipocytes and to assess the relationship between IGFBP‐2 expression, circulating IGFBP‐2, obesity, and insulin sensitivity in obese children. Thirty‐eight obese children were recruited. Insulin sensitivity was assessed by intravenous glucose tolerance test and body composition by total‐body dual‐energy X‐ray absorptiometry. Serum free and total IGF‐I, IGFBP‐2, adiponectin, and leptin were measured. Relative quantification of IGFBP‐2 mRNA by subcutaneous adipose tissue biopsies was obtained using real‐time PCR. Circulating IGFBP‐2 was positively associated with insulin sensitivity, in agreement with previous studies. IGFBP‐2 expression was associated with fat mass percentage (r = 0.656; P < 0.02), insulin sensitivity (r = ?0.604; P < 0.05), free IGF‐I (r = 0.646; P < 0.05), and leptin (r = 0.603; P < 0.05), but not with circulating IGFBP‐2 (r = 0.003, P = ns). The association between IGFBP‐2 expression and adiposity (r = 0.648; P < 0.05) was independent of insulin sensitivity (covariate). In conclusion, circulating IGFBP‐2 was positively associated with insulin sensitivity. IGFBP‐2 was expressed by subcutaneous abdominal adipocytes of obese children and increased with adiposity, independently from the level of insulin sensitivity. IGFBP‐2 expression may potentially be one of the local mechanisms used by adipocytes to limit further fat gain.  相似文献   

13.
Young‐onset calorie restriction (CR) in rodents decreases serum IGF‐1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti‐aging effects. However, little is known on the effects of CR on the IGF‐1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2‐year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m?2) young and middle‐aged (20–50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2‐years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP‐1 and a 42% reduction in IGF‐1:IGFBP‐1 ratio at 2 years (P < 0.008), but did not change IGF‐1 and IGF‐1:IGFBP‐3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF‐AB and TGFβ‐1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF‐1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long‐term CR in humans significantly and persistently increases serum IGFBP‐1 concentration.  相似文献   

14.
Insulin‐like growth factor‐1 (IGF‐1) mediates some of growth hormone anabolic functions through its receptor, IGF‐1R. Following ligand binding, intracellular signaling pathways are activated favouring proliferation, cell survival, tissue growth, development, and differentiation. IGF‐1 is included in the World Anti‐Doping Agency Prohibited List. While the evidence for IGF‐1 as performance‐enhancing substrate in healthy humans is still weak, clinical studies demonstrated that the endogenous growth hormone/IGF‐1 excess is associated with cardiovascular implications. Previously, we demonstrated that human peripheral blood lymphocytes represent a suitable system to identify a gene signature, related to dihydrotestosterone or IGF‐1 abuse, independent from the type of sport. In addition, in a proteomic study, we demonstrated that dihydrotestosterone hyperdosage affects cell motility and apoptosis. Here, we investigate the doping action of IGF‐1 by means of a differential proteomic approach and specific protein arrays, revealing an active cytoskeletal reorganization mediated by Stat‐1; moreover, IGF‐1 stimulation produces a sustained activation of different signaling pathways as well as an overproduction of cytokines positively related to immune response and inflammation. In conclusion, these data indicate that, following IGF‐1 hyperdosage, circulating peripheral blood lymphocytes could be more prone to transendothelial migration.  相似文献   

15.
HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic miRNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR‐483‐3p along with its host gene IGF2 (Insulin‐like growth factor 2) was found down‐regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR‐483‐3p via dual‐luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SH‐SY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR‐483‐3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR‐483‐3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 siRNA may inverse the function of miR‐483‐3p inhibitor. This study revealed that miR‐483‐3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.  相似文献   

16.
Objective: Elevated levels of tumor necrosis factor‐α (TNF‐α) protein and mRNA have been reported in adipose tissue from obese humans and rodents. However, TNF‐α has catabolic and antiadipogenic effects on adipocytes. Addressing this paradox, we tested the hypothesis that paracrine levels of TNF‐α, alone or together with insulin‐like growth factor‐I (IGF‐I), support preadipocyte development. Research Methods and Procedures: Cultured stromal‐vascular cells from rat inguinal fat depots were exposed to serum‐free media containing insulin and 0.2 nM TNF‐α, 2.0 nM TNF‐α, or 0.2 nM TNF‐α + 1.0 nM IGF‐I at different times during 7 days of culture. Results: TNF‐α inhibited adipocyte differentiation as indicated by a reduction in both immunocytochemical reactivity for the preadipocyte‐specific antigen (AD3; early differentiation marker) and glycerol‐3‐phosphate dehydrogenase activity (late differentiation marker). Early exposure (Days 1 through 3 of culture) to 0.2 nM TNF‐α did not have a long term effect on inhibiting differentiation. Continuous exposure to 0.2 nM TNF‐α from Days 1 through 7 of culture resulted in a 75% increase in cell number from control. There was a synergistic effect of 0.2 nM TNF‐α + 1 nM IGF‐I on increasing cell number by Day 7 of culture to levels greater than those observed with either treatment applied alone. Discussion: These data suggest that paracrine levels (0.2 nM) of TNF‐α alone or in combination with IGF‐I may support adipose tissue development by increasing the total number of stromal‐vascular and/or uncommitted cells within the tissue. These cells may then be recruited to become preadipocytes or may alternatively serve as infrastructure to support adipose tissue growth.  相似文献   

17.
18.
We have demonstrated previously in Hs578T cells that insulin‐like growth factor binding protein (IGFBP)‐3 can significantly accentuate ceramide (C2)‐induced apoptosis, but has no effect on cell death induced by integrin detachment [using an arginine‐glycine‐aspartic acid (RGD)‐containing peptide]. In contrast we found that IGFBP‐5 could inhibit apoptosis induced by either C2 or integrin detachment. It is now clear that the mitochondria not only provide the energy required for cell viability, but can also play an important role during the commitment phase to apoptosis. We used a mitochondrial respiratory chain inhibitor, antimycin A, at both apoptotic and nonapoptotic doses to further investigate the IGF‐independent actions of IGFBP‐3 and IGFBP‐5 on C2 and RGD‐induced apoptosis in the Hs578T cells. Hs578T cells had one of three treatments. 1: They were incubated with increasing doses of antimycin A for 24 h. 2: They were coincubated with an apoptotic dose of either C2 or RGD together with a nonapoptotic dose of antimycin A for 24 h. 3: They were incubated with a binding protein (100 ng/ml) for 24 h followed by coincubation of the binding protein with an apoptotic dose of antimycin A for a further 24 h. Cell viability was assessed by trypan blue dye exclusion and MTT assay, and apoptosis was confirmed and measured by morphologic assessment and flow cytometry. We found that antimycin A initiated apoptosis at 10 μmol/L and above. We also demonstrated that a nonapoptotic dose of antimycin A (0.1 μmol/L) significantly inhibited C2‐induced apoptosis, whereas it significantly accentuated RGD‐induced cell death. In addition, we found that cell death induced by antimycin A can be accentuated by IGFBP‐3 but is not affected by IGFBP‐5. These data indicate that IGFBP‐3 can directly enhance apoptosis triggered via the mitochondria; either directly by a mitochondrial inhibitor or by C2 (which we demonstrate to act via effects on the mitochondria in this model). IGFBP‐5, however, appears to confer survival effects via a distinct pathway not involving the mitochondria. J. Cell. Biochem. 80:248–258, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

19.
The uterus and the placenta synthesize insulin‐like growth factors (IGFs) and insulin‐like binding proteins (IGFBPs). These growth factors are implicated in processes of proliferation and differentiation that occur in the uterus. To determine the patterns of expression of IGFs during rat pregnancy we used in situ hybridization with digoxigenin labeled probes on uterus from day 7 to day 16 of pregnancy. In early gestation days (7–8) both IGF mRNAs showed similar tissue distribution with relative abundance in the stroma and circular muscle layer. On days 11 and 12 expression for IGF‐I mRNA was found in the mesometrial decidua and metrial gland and in the ectoplacental cone while clear expression of IGF‐II mRNA could only be found in the latter. On days 13 and 14, expression for IGF‐I mRNA could be detected in the mesometrial decidua and metrial gland but no expression was observed for IGF‐II mRNA. A gradient of IGF‐I mRNA expression could be observed in the placenta on day 16, with the trophoblastic cells of the basal zone expressing the signal with stronger intensity than in the labyrinthine zone. For IGF‐II mRNA the highest expression was associated with the labyrinthine zone. Endovascular trophoblast was positive for both mRNAs. The spatial and temporal patterns of expression suggests a role for IGFs in the process of decidualization as well as in the establishment, growth and differentiation of the various trophoblast cells of the placenta. Mol. Reprod. Dev. 53:294–305, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
The insulin‐like growth factor I (IGF‐I) signalling pathway contributes a major role on various cancer cell proliferation, survival and cell cycle. The present study was aimed to investigate the effect of nimbolide on IGF signalling and cell cycle arrest in MCF‐7 and MDA‐MB‐231 breast cancer cell lines. The protein expression of IGF signalling molecules and cell cycle protein levels was assessed by western blot analysis. In order to study the interaction of nimbolide on IGF‐1 signalling pathway, IGF‐I and phosphoinositide 3‐kinase (PI3K) inhibitor (LY294002) were used to treat MCF‐7 and MDA‐MB‐231 cells. Further, the cell cycle arrest was analysed by flow cytometry. The protein expression of IGF signalling molecules was significantly decreased in nimbolide‐treated breast cancer cells. PI3K inhibitor and IGF‐I with nimbolide treatment notably inhibited phosphorylated Akt. The cell cycle arrest was observed at the G0/G1 phase, and accumulation of apoptotic cells was observed in nimbolide‐treated breast cancer cell lines. Nimbolide also increased the protein expression of p21 and decreased the cyclins in both the cell lines. Nimbolide decreases the proliferation of breast cancer cells by modulating the IGF signalling molecules, which could be very useful for the breast cancer treatment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号