首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suding KN  LeJeune KD  Seastedt TR 《Oecologia》2004,141(3):526-535
Changes in competitive interactions under conditions of enhanced resource availability could explain the invasion success of some problematic plant species. For one invader of North American grasslands, Centaurea diffusa (diffuse knapweed), we test three hypotheses: (1) under ambient (high resource) conditions, C. diffusa is better able to tolerate competition from the resident community (competitive response), (2) under ambient conditions, C. diffusa strong impacts the competitive environment (competitive effect), and (3) reductions in nitrogen and/or phosphorus availability diminish these advantages. In support of our first hypothesis, C. diffusa was the most tolerant to neighbor competition of the four focal species under current resource conditions. In opposition to our second hypothesis, however, neighborhoods that contained C. diffusa and those where C. diffusa had been selectively removed did not differ in their impact on the performance of target transplant individuals or on resource conditions. Reduction in resource availability influenced competitive tolerance but not competitive impact, in partial support of our last hypothesis. Reduction in soil nitrogen (via sucrose carbon addition) enhanced the degree of neighbor competition experienced by all species but did not change their relative rankings; C. diffusa remained the best competitor under low nitrogen conditions. Reduction of soil phosphorus (via gypsum addition) weakened the ability of C. diffusa to tolerate neighbor competition proportionately more than the other focal species. Consequently, under low phosphorus conditions, C. diffusa lost its competitive advantage and tolerated neighbor competition similarly to the other focal species. We conclude that C. diffusa invasion may be double-edged: C. diffusa is less limited by nitrogen than the other focal species and is better able to utilize phosphorus to its competitive advantage.  相似文献   

2.
Knapweeds (Centaurea spp.) are damaging invaders of grasslands and other North American rangelands. A field study was conducted to determine conditions that promote diffuse knapweed (C. diffusa) emergence and establishment in a native Colorado grassland (North America). Knapweed was planted in native grassland under treatments with different opening sizes, levels of competition, knapweed seed burial and season of seeding. There was no effect of opening size where competing natives were alive, but knapweed emergence in 5- and 15-cm openings was higher than 0-cm openings where natives were killed. Reducing competition reduced fall diffuse knapweed emergence, but did not affect spring emergence. Seed burial increased knapweed emergence, but the effect varied by season. Although diffuse knapweed emergence reached 35%, only four plants survived from 3,600 seeds. This native grassland did not prevent knapweed emergence or establishment, but both were so low that rapid knapweed invasion is unlikely.  相似文献   

3.
Diffuse and spotted knapweed (Centaurea diffusa Lam. and C. stoebe micranthos (Gugler) Hayek) are Eurasian plants that devastate dry and mesic North American grasslands. They have a mutualistic association with arbuscular mycorrhizal fungal (AMF) phylotypes with hyphal links to nearby plants and a nutrient flux to the strongest sink, usually knapweed. They displace many AMF beneficial to grass and affect knapweed nutrient allocation, biology, knapweed insects and probably root necrosis and emergence of ant buried seed. AMF determined nutrient root or shoot allocation determines nutrient shoot and root allocation and the benefit to root or seed-head insect species and whether C. diffusa is an annual–biannual or a semelparous perennial needing 5 or more years to flower. Both knapweeds do well without its AMF phylotypes without competition in fertile soil. In grass in Eurasia, they have a community of seven seed-head species segregated by head development stage. Prolonged seed dormancy buffered knapweed decline that resulted in release of a surfeit seed-head species. The presence of an eliasome on the seed and vigorous seedling clumps suggests burial by myrmecochorous ants with AMF supplied carbon supporting their growth. The root species community is segregated by habitat, climate, root part, and size. With larval induced compensatory growth and AMF nutrient sharing, the growth of plants with and without a larva was the same. On feeding completion, a nutrient out flux from the attacked plants reduced growth; but without killing. This needs a dual species or a repeated single species attack. Root species packing increases knapweed utilization; but the four approved species are insufficient for maximum utilization. Two additions are suggested. The aim of the paper is to provide enough understanding of the AMF and its plant and insect interactions to facilitate knapweed biological control and avoid past mistakes.  相似文献   

4.
The expected outcome of weed control in natural systems is that the decline of a dominant weed will result in an increase in diversity of the plant community but this has seldom been tested. Here we evaluate the response of the plant community following the decline of diffuse knapweed (Centaurea diffusa) in six different pastures at White Lake, BC, Canada over five years. This period followed the establishment, spread and high levels of attack by the introduced European weevil, Larinus minutus, as part of a biological control program. Knapweed declined immediately before and during the study period, but, contrary to expectations, the species richness and diversity of the rangeland plant community did not increase. The absolute cover of native and introduced forbs and grasses increased following knapweed decline, but only the introduced grasses showed a consistent increase in cover relative to the other life-forms. However, unlike in other studies, the native plants dominated the study site. We conclude that the changes in plant communities following successful biological control are variable among programs and that the impact of replacement species must be evaluated in assessing the success of ecological restoration programs that use biological control to manage an undesirable weed.  相似文献   

5.
The Eurasian forb Centaurea maculosa (Lam.; spotted knapweed) has invaded millions of hectares of semi-arid grasslands in western North America. It readily colonizes disturbed areas, but also invades pristine grasslands. C. maculosa's success could be attributed to greater use, or more efficient use, of available soil nitrogen (N). Soil N often limits growth on semi-arid grasslands. Greater or more efficient use of soil N by C. maculosa, if this occurred, may inhibit establishment, survival, or reproduction of native grasses. In a glasshouse, C. maculosa and two native grasses, Pseudoroegneria spicata [Scribn. and Smith] A. Love and Pascopyrum smithii [Rybd.] A. Love, were grown in mixed- and monoculture for 8 weeks to determine growth response to two soil N supplies, which mimicked low and high N mineralization rates in semi-arid grasslands. At the end of the 8 weeks, plants were exposed to 15N-labeled nitrate for 24 h, and harvested to compare uptake of NO3 . C. maculosa's growth response to N indicated that it was more competitive for N than the tussock grass P. spicata, but less competitive than the rhizomatous grass P. smithii. C. maculosa used nitrogen less efficiently than both of these native grasses. C. maculosa roots took up more 15N per unit root mass than the grasses, but acquired less N than P. smithii because P. smithii had greater root mass than C. maculosa. Total biomass and 15N uptake of C. maculosa varied depending on which species it was growing with. C. maculosa's success cannot be explained wholly by greater or more efficient use of soil N than that of the native grasses with which it competes.  相似文献   

6.
Biological control of weeds by arthropod herbivores is thought to work by reducing the competitive ability of the weed relative to the surrounding vegetation. However, the assumption that herbivory reduces plant competitive ability has not been tested in most biological control systems, and counter to expectation, recent research on the impact of biological control agents on invasive Centaurea species suggests that this genus may respond to herbivory by increased competitive ability through enhanced plant re-growth and/or by inducing increased production of phytotoxic allelochemicals. We examined the impact of two biological control agents of the invasive plant diffuse knapweed (C. diffusa) to see if feeding by either of these insects would enhance the plant’s competitive ability or allelochemical output. Sub-lethal herbivory by either of the biological control agents significantly reduced knapweed performance when the plant was grown in competition with either of two native species. Competition with knapweed significantly reduced the performance of both native species (Artemisia frigida and Bouteloua gracilis), and herbivory by one of the biocontrol agents resulted in a small but significant increase in both native species’ performance. Diffuse knapweed’s putative allelochemical 8-hydroxyquinoline was not detected in experimental or field collected soils from knapweed-infested sites. In contrast to other studies on the impacts of biological control on other Centaurea species, these data support the premise that biological control agents may reduce invading plant competitive ability. We find no evidence for diffuse knapweed allelopathy mediated by 8-hydroxyquinoline or enhanced allelopathy in response to herbivory by biological control agents.  相似文献   

7.
Abundances and interactions among biological control insects and their effects on target invasive plants were monitored within the flower heads and roots of diffuse knapweed, Centaurea diffusa, and in spotted knapweed, Centaurea stoebe, along the Colorado Front Range. Flower weevils, (Larinus species) and root-feeders (Cyphocleonus achates and Sphenoptera jugoslavica) were released on knapweed that already supported biological control gall flies (Urophora species). At a single monitoring site, seed production by C. diffusa declined from 4400 seeds m−2 in 1997 to zero seeds m−2 on the monitoring sites in 2006, while the flowering stem density of C. diffusa declined from a peak of almost 30 stems m−2 in 2000 to zero stems m−2 in 2006. The average abundance of Urophora and Larinus in flower heads fluctuated independently during the 2001–2006 interval, while the relative abundance of C. achates and S. jugoslavica in roots exhibited a weak inverse relationship that appeared driven by climate effects. The relative abundance of insects on a population of C. stoebe was monitored for five years as Larinus species and C. achates became established on spotted knapweed that already supported Urophora species. Spotted knapweed seed production on our monitoring site declined from 4600 seeds m−2 in 2003 to zero seeds m−2 in 2006. Unlike C. diffusa, substantial numbers of rosettes of C. stoebe remained present. Larinus consumed almost all Urophora encountered in C. diffusa, and consumed about 40% of the Urophora in co-infested flower heads of C. stoebe (ca. 10–15% of the total Urophora population). No negative correlations between the relative densities of flower head and root-feeding insects were observed. The effects of these insects on target plants have produced results consistent with the ‘cumulative stress hypothesis’ for biological control of Centaurea species.  相似文献   

8.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

9.
Efforts to arrest the spread of invasive weeds with herbivory may be hindered by weak effects of the herbivores or strong compensatory responses of the invaders. We conducted a greenhouse experiment to study the effects of defoliation and soil fungi on competition between the invasive weed Centaurea solstitialis and C. solstitialis and Avena barbata, a naturalized Eurasian annual grass, and Nassella pulchra, a native California bunchgrass. Surprisingly, considering the explosive invasion of grasslands by C. solstitialis, Avena and Nassella were strong competitors and reduced the invader’s biomass by 80.2% and 80.1% over all defoliation and soil fungicide treatments, respectively. However, our experiments were conducted in artificial environments where competition was probably accentuated. When fungicide was applied to the soil, the biomass of C. solstitialis was reduced in all treatment combinations, but reduction in the biomass of the invader had no corollary impact on the grasses. There was no overall effect of defoliation on the final biomass of C. solstitialis as the invader compensated fully for severe clipping. In fact, the directional trend of the clipping effect was +6.4% over all treatments after eight weeks. A significant neighbor × soil fungicide × clipping effect suggested that the compensatory response was the strongest without soil fungicide and when C. solstitialis was alone (+ 19%). Our key finding was that the compensatory response of C. solstitialis in all treatments was associated with an increase in the weed’s negative effects on Nassella and Avena – there was a significant decrease in the total biomass of both grasses and the reproductive biomass of Avena in pots with clipped C. solstitialis. Our results were obtained in controlled conditions that may have been conducive to compensatory growth, but they suggest the existence of mechanisms that may allow C. solstitialis, like other Centaurea species, to resist herbivory.  相似文献   

10.
Centaurea maculosa (Lam.) (spotted knapweed) reduces wildlife and livestock habitat biodiversity and increases erosion. Nutrient availability to plants may be used to accelerate succession away from spotted knapweed. Early‐successional plant communities often have high nutrient availability, whereas late‐successional communities are often found on lower nutrient soils. We hypothesized that removal of nutrients would change the competitive advantage from spotted knapweed to Pseudoroegneria spicatum (bluebunch wheatgrass) (late seral). In two addition series matrices, background densities of Secale cereale (annual rye) and Elymus elimoides (bottlebrush squirreltail) (3,000 seeds/m2) were used to remove nutrients from the soil. In another set of addition series matrices, nitrogen (33 kg/ha) or phosphorus (33 kg/ha) were added to the soil. Nutrient analysis of soil and vegetation indicated that annual rye and bottlebrush squirreltail reduced nutrient availability in soils. In another matrix, neither a background density nor nutrients were added. Data were fit into Watkinson's curvilinear model to determine the competitive relationship between bluebunch wheatgrass and spotted knapweed. This allowed comparison of the equivalence ratios (C) generated from each addition series. The C parameters are the per‐plant equivalent of bluebunch wheatgrass or spotted knapweed and can be interpreted as the ratio of intra‐to‐interspecific competition. The C parameters are also the equivalence ratio of the number of spotted knapweed it takes to have equivalent effect on bluebunch wheatgrass or the number of bluebunch wheatgrass having the equivalent effect on spotted knapweed. Without nutrient manipulation, spotted knapweed was more competitive than bluebunch wheatgrass. The C for bluebunch wheatgrass was 0.17, indicating that 0.17 knapweed plants were competitively equivalent to one wheatgrass. Annual rye changed the competitive balance in favor of bluebunch wheatgrass (C = 9.9). Addition of nitrogen, phosphorus, or the mid‐seral species did not change the competitive relationship between the two species. This preliminary study suggests that succession from spotted knapweed to late‐seral bluebunch wheatgrass community may be accelerated by altering resource availability.  相似文献   

11.
Centaurea maculosa Lam. (spotted knapweed), a Eurasian perennial forb, has invaded disturbed and undisturbed semiarid grasslands in the western United States. In the past, success in controlling C. maculosa and restoring invaded areas has been limited. Most research has addressed chemical aspects of invasive species interactions with soils, while potential impacts of altered soil physical properties on C. maculosa's success has not been studied. We hypothesized that the persistence of C. maculosa in semiarid rangelands might reflect an ability to alter site conditions. The objective of this study was to compare selected soil physical properties under C. maculosa-dominated and native perennial grass-dominated areas on semiarid grassland. We used six field sites in western Montana containing adjacent plots dominated by C. maculosa and by native perennial grasses. Soil physical properties including particle size fractions, bulk density, and hydraulic and thermal properties, as well as total organic carbon content, of near-surface soils were measured for each vegetation type. Soil physical properties seldom differed between C. maculosa- and native grass-dominated areas. When soil physical properties differed, the differences were inconsistent within and among sites. Presence of C. maculosa did not alter surface soil characteristics at our six sites, thus its persistence on these semi-arid grasslands cannot be explained by an ability to alter near-surface soil characteristics.  相似文献   

12.
We measured seed germination and seedling survivorship of spotted knapweed, Centaurea stoebe, in a series of laboratory and field experiments to evaluate the efficacy of seed limitation as a management focus. This work was initiated 6 years after introduction of several biological control agents. The soil seed bank of the site used in this study contained a mean density of 5,848 seeds/m2 (ranging from 0 to 16,364 seeds/m2), and 92% of the seeds isolated from soils were shriveled, discolored, and/or partially decayed. Additionally, none of the intact seeds germinated, suggesting that the viable seed bank at our field study site has been exhausted. Centaurea stoebe seeds were planted into pots under a range of soil nitrogen (N) availability, with half of the pots containing a single density of previously established seedlings of a native cool-season grass, slender wheatgrass (Elymus trachycaulus). A watering regime mimicking local precipitation was applied. Spotted knapweed exhibited large biomass responses to N addition, but the presence of grasses suppressed the ability to exploit this N. Surprisingly, low soil N conditions improved knapweed survivorship in the presence of grasses. Nevertheless, recruitment and biomass were still far below the levels reached in the absence of competition. To evaluate the effect of density on successful recruitment, Centaurea stoebe seed was introduced into a meadow at three densities matching reduced levels of seed production under the constraints of seed predators. These densities were sown with or without a seed mixture of native species, into an existing plant community lacking C. stoebe, and seedling recruitment was recorded over 2.5 years. Across all plots and densities sown (568–2,272 seeds m−2 year−1), seedling recruitment was less than 1%. The invasion potential of spotted knapweed was greatly diminished when realistic levels of plant competition and biological control limit seed production. We therefore conclude that a combination of seed limitation and shortage of ‘safe sites’ within undisturbed vegetation can limit densities of C. stoebe.  相似文献   

13.
Abstract The objective was to determine the effects of root and shoot competition on seedling establishment of the unpalatable grasses Stipa gynerioides and S. tenuissima in a native grassland of central Argentina dominated by the palatable grass S. clarazii. Seeds of the two unpalatable species were sown in natural occurring microsites with shoot and root competition from the palatable species, and in artificially created microsites without either shoot competition or shoot and root competition. In addition, fresh seeds of the unpalatable species were subjected to daily alternating temperatures under laboratory and field conditions to determine the effect on seed dormancy and germination. Seedling establishment of S. gynerioides and S. tenuissima occurred only in microsites without shoot and root competition. Also, the fluctuation of temperature near the soil surface in these microsites reduced dormancy and promoted rapid germination in both species. Our results support the hypothesis that, in swards dominated by palatable grasses, vegetation gaps of low competitive pressure favour seedling establishment of unpalatable grasses. It is suggested that the creation of these gaps by overgrazing can be an important mechanism in the process of species replacement in native grasslands.  相似文献   

14.
Macek  Petr  Lepš  Jan 《Plant Ecology》2003,168(1):31-43
Melinis minutiflora Beauv. (Poaceae) is an African grass that is invading mid-elevation Trachypogon savannas in Venezuela. The objective of this study was to investigate the influence of soil fertility, competition and soil disturbance in facilitating Melinis' invasion and growth in these savanna sites. We manipulated soil fertility by adding nitrogen (+N), phosphorus and potassium (+PK), or nitrogen, phosphorus, and potassium (+NPK). We simultaneously manipulated the competitive environment by clipping background vegetation. In a separate experiment, we mechanically disrupted the soil to simulate disturbance. We hypothesized that germination and growth were bottlenecks to early establishment in undisturbed savanna, but that disturbance would alleviate those bottlenecks. We measured Melinis seed germination and subsequent establishment by adding seeds to all plots. We examined Melinis growth by measuring biomass of Melinis seedling transplants, 11 months after they were placed into treatment plots. Germination and establishment of Melinis from seed was extremely low. Of the 80,000 seeds applied in the experiment, only 28 plants survived the first growing season. Mortality of Melinis seedling transplants was lowest in PK fertilized plots, but in the absence of PK mortality increased with N additions and clipping. By contrast, fertilization of the savanna with NPK greatly increased Melinis seedling biomass and this effect was greatly enhanced when competition was reduced (e.g. clipping). Melinis transplant growth responded strongly to soil disturbance- a response not fully explained by removal of competitors (clipping) or changes in soil nutrients and moisture. We suspect that disruption of the soil structure allowed for greater root proliferation and subsequent plant growth. We believe that native savanna is relatively resistant to Melinis invasion, since Melinis seedlings persisted in intact savanna but exhibited little or no growth during the first year. The significant enhancement of Melinis seedling growth with clipping and nutrient additions suggests that low soil nutrients and the presence of native savanna species are important factors in the ability of native savanna to resist Melinis establishment. However, the potential for Melinis growth increases enormously with soil disturbance.  相似文献   

15.
Invasive plants are often associated with greater productivity and soil nutrient availabilities, but whether invasive plants with dissimilar traits change decomposer communities and decomposition rates in consistent ways is little known. We compared decomposition rates and the fungal and bacterial communities associated with the litter of three problematic invaders in intermountain grasslands; cheatgrass (Bromus tectorum), spotted knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula), as well as the native bluebunch wheatgrass (Pseudoroegneria spicata). Shoot and root litter from each plant was placed in cheatgrass, spotted knapweed, and leafy spurge invasions as well as remnant native communities in a fully reciprocal design for 6 months to see whether decomposer communities were species‐specific, and whether litter decomposed fastest when placed in a community composed of its own species (referred to hereafter as home‐field advantage–HFA). Overall, litter from the two invasive forbs, spotted knapweed and leafy spurge, decomposed faster than the native and invasive grasses, regardless of the plant community of incubation. Thus, we found no evidence of HFA. T‐RFLP profiles indicated that both fungal and bacterial communities differed between roots and shoots and among plant species, and that fungal communities also differed among plant community types. Synthesis. These results show that litter from three common invaders to intermountain grasslands decomposes at different rates and cultures microbial communities that are species‐specific, widespread, and persistent through the dramatic shifts in plant communities associated with invasions.  相似文献   

16.
We estimated R*s and tested the applicability of R* theory on nonindigenous plant invasions in semi-arid rangeland. R* is the concentration of a resource that a species requires to survive in a habitat. R* theory predicts that a species with a lower R* for the most limiting resource will competitively displace a species with a higher R* under equilibrium conditions. In a greenhouse, annual sunflower (Helianthus annuus L.), bluebunch wheatgrass (Agropyron spicatum Pursh), and spotted knapweed (Centaurea maculosa Lam.) were grown in monoculture and 2- and 3-species mixtures for three growth periods in an attempt to reduce soil NO3-N concentrations below each species’ R*. At the end of each growth period, aboveground biomass by species and soil plant available nitrogen were sampled. Decreasing biomass coupled with decreasing soil plant available nitrogen was used to quantify R*s for the three species. R*s for annual sunflower, bluebunch wheatgrass, and spotted knapweed were estimated to be 0.6±0.16 ppm NO3, less than 0.05 ppm NO3, and 0.6±0.13 ppm NO3, respectively. Estimated R*s did not predict the outcome of competition among species. To successfully predict plant community dynamics on semi-arid rangeland with and without the presence of a nonindigenous invasive species, a more comprehensive model that includes mechanisms in addition to competition may have to be considered. We speculate that R* theory may prove most useful for predicting the outcome of competition within functional groups.  相似文献   

17.
Best RJ 《Oecologia》2008,158(2):319-327
Increased resource availability can facilitate establishment of exotic plant species, especially when coincident with propagule supply. Following establishment, increased resource availability may also facilitate the spread of exotic plant species if it enhances their competitive abilities relative to native species. Exotic Canada geese (Branta canadensis) introduce both exotic grass seed and nutrients to an endangered plant community on the Gulf Islands of southwestern British Columbia, Canada. I used greenhouse experiments to assess the competitive advantage of the exotic grasses relative to native and exotic forbs in this community and to test the impacts of nutrient addition from goose feces on competitive outcomes. I grew experimental communities varying in their proportion of forbs versus exotic grasses, and added goose feces as a nutrient source. I found that both native and exotic forbs produced significantly more biomass in competition with conspecifics than in competition with the grasses, and that the proportional abundance of two out of three native forbs was lowest in the combined presence of exotic grasses and nutrient addition. In a second experiment, I found that in monoculture all species of forbs and grasses showed equal growth responses to nutrients. The exotic species did not convert additional nutrients into additional biomass at a higher rate, but did germinate earlier and grow larger than the native species regardless of nutrient availability. This suggests that the exotic species may have achieved their competitive advantage partly by pre-empting resources in community mixtures. Small and late-germinating native forbs may be particularly vulnerable to competitive suppression from exotic grasses and forbs and may be at an even greater disadvantage if their competitors are benefiting from early access to additional nutrients. In combination, the input of exotic propagules and additional nutrients by nesting geese may compromise efforts to maintain native community composition in this system.  相似文献   

18.
Exotic plants have been found to use allelochemicals, positive plant–soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14–8% and 4–0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4–3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil‐based exotic plant control tool, especially for B. tectorum and C. diffusa.  相似文献   

19.
We studied the cumulative effects of 3 years of carbon amendments on previously disturbed mixed-grass prairie sites near Boulder, Colorado. Analysis of soil inorganic nitrogen during the third field season indicated statistically significant but short-term nitrogen reduction in response to addition of a combination of sugar and sawdust treatments. Plant foliage production was significantly reduced by these carbon amendments and averaged 377 g/m2/year on control plots versus 219 g/m2/year on treated plots. Undesirable species such as Centaurea diffusa (diffuse knapweed) exhibited a similar biomass response. But after three years of treatment there is little evidence to suggest a relative increase in desirable, reseeded species such as Agropyron smithii (western wheatgrass). We suggest that the carbon amendment treatment alone is an inadequate remediation technique in areas exposed to extensive seed rain by exotic species.  相似文献   

20.
Rebele  Franz 《Plant Ecology》2000,147(1):77-94
I studied competition and coexistence of three tall clonal perennial plant species, Calamagrostis epigejos (L.) Roth, Solidago canadensis L., and Tanacetum vulgare L. along a gradient of soil productivity over five years. A replacement series field experiment was conducted with high, moderate and low fertility levels in 1m×1m plots. There were significant effects of soil type on ramet density (P<0.001), mean height (P<0.01), and total biomass (P<0.01). Ramet density, mean height, and total biomass increased with increasing soil fertility. There were also significant effects of mixture on ramet density (P<0.01), but not on mean height and total biomass for all species. Significant neighbor effects on ramet density and total biomass (P<0.01) were found for Solidago, showing that it is important whether Tanacetum or Calamagrostis is its neighbor within mixtures. During the five years there was only one case of competitive exclusion: Calamagrostis excluded Solidago on the most fertile substrate in the fifth growing season. In most cases species coexisted over the five years. Each of the three species was able to dominate in at least one combination of substrate type and mixture. The experiment showed that asymmetric competition for light on substrates of high fertility, symmetric competition for nutrients on nutrient-poor soil and positive interactions especially on substrates of intermediate fertility played a role. A founder effect was evident in aggregated mixtures of Calamagrostis and Solidago on the nutrient-rich substrate. A conceptual model of the relative importance of root competition for soil nutrients, shoot competition for light, and positive interactions along the fertility gradient is presented. The model emphasizes that positive interactions play an important role over a broad range of the productivity scale with a peak at intermediate levels of fertility. On the substrate of high productivity shoot competition for light is more important than positive interactions and root competition for soil nutrients as well. The competitive superiority of Calamagrostis on the most productive substrate was evident only in the long run. Rare events like extreme summer drought or selective herbivore pressure caused a switch in dominance in mixtures with Solidago, respectively Tanacetum. The guerrilla growth strategy of Calamagrostis and interference competition through a dense cover of aboveground biomass and litter could further cause competitive exclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号