首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual dimorphism and male biased sex ratios have been predicted for dioecious plants experiencing the limited conditions for growth and reproduction found in many alpine environments. To test these predictions, the reproductive ecology of two congeneric, co-occurring, dioecious, clonal, species was examined in the subalpine and alpine zones of Kosciuszko National Park, southeastern Australia. Specifically, plant size (vegetative cover of plants in quadrats), floral display (number of flowers per inflorescence, number of inflorescences per quadrat) and sex ratios (proportion of females in quadrats with flowers) were examined in ten populations of Astelia psychrocharis (Asteliaceae) and nine populations of Astelia alpina var. novae-hollandiae (Asteliaceae). Sexual dimorphism did occur, with males having more flowers per inflorescence (106% more flowers for A.alpina males and 12% more for A.psychrocharis males compared to females) and more inflorescences per quadrat than females (78% more inflorescences for A.alpina males and 46% more inflorescences for A.psychrocharis males compared to females). Plant size did not differ between male and female quadrats of either species, nor were there male biased sex ratios. However, plant size was related to flowering status in A.psychrocharis with the 65 quadrats that did not flower having lower vegetative cover than the 175 flowering quadrats indicating that there may be a minimum size/ cover required prior to flowering in this species. For A.alpina, all but two of the 185 quadrats randomly sampled flowered. There was no effect of altitude on plant size and very little effect of altitude on floral display for either species, apart from a slight increase in the number of inflorescences per quadrat with increasing altitude for A.psychrocharis, and slight decrease in number of flowers per inflorescence with increasing altitude for A.alpina females.  相似文献   

2.
Summary

A study was made in the Cairngorms, Scotland to make recommendations for a monitoring scheme capable of detecting changes in the vegetation caused by recreational pressure following the development of a funicular railway. Four methods were used in field trials to assess percentage cover of plant species and gravel, rock and bare ground, where appropriate, in two vegetation types (open and closed). The methods used were visual estimates in 50 × 40 cm quadrats (Q), the mean of visual estimates in twenty 10 × 10 cm sub-quadrats of the 50 × 40 cm quadrats (Q20), a modified point intercept method (RL) and photography. Variances between observers and between-quadrats were estimated for the different methods. The sampling design for detecting change was based on a model of variance, constructed from field trial data.

Between-observer and between-quadrat variances were related to mean percentage cover and approximated to a binomial distribution. The between-quadrat variance was larger than observer variance. The Q20 method achieved appreciably better precision than the other methods. Analysis of half of the 10 × 10 cmsub-quadrats (1/2Q20) selected in a checker board design achieved a relative efficiency of 78% compared with the Q20. This result suggests that comparable precision to the Q20 method could be achieved by choosing about 14 sub-quadrats in a larger quadrat, thus saving some time. Variation between quadrats also suggested that the Q20 method was the one of choice for maximising precision. The precision of the photographic method was based on fewer data points, so is less accurate than other estimates.

Minimum sample sizes were estimated for detecting a 10% relative change of a species in open vegetation with 30% cover (i.e. a change from 30% to <27 or to >33% cover). With a 10 % Type II error rate and 5 % Type I error rate the minimum sample sizes were 47 quadrats for Q, 18 for Q 20, 43 for RL, and 23 for the means of ten 10 × 10 cm sub-quadrats in open vegetation.

The most time-efficient field recording appeared to be the use of Q despite the required sample size being 2.6 times higher than that of Q20. The far lower time requirement per quadrat, however, compensated for the higher numbers. The number of quadrats would depend on the specified change in percentage cover and on the statistical significance level used. For example, to detect a 10% absolute change in cover (i.e. from 30% to either <20 % or >40 % cover) at 95 % probability the net effective recording time is estimated at 5 h per vegetation type while to detect a 5 % change at 99 % probability would require c. 25 h. Larger samples may be required for other species or for species with a low initial cover.  相似文献   

3.
Lissa M. Leege 《Plant Ecology》2006,184(2):203-212
Spatial autocorrelation in vegetation has been discussed extensively, but little is yet known about how standard plant sampling methods perform when confronted with varying levels of patchiness. Simulated species maps with a range of total abundance and spatial autocorrelation (patchiness) were sampled using four methods: strip transect, randomly located quadrats, the non-nested multiscale modified Whittaker plot and the nested multiscale North Carolina Vegetation Survey (NCVS) plot. Cover and frequency estimates varied widely within and between methods, especially in the presence of high patchiness and for species with moderate abundances. Transect sampling showed the highest variability, returning estimates of 19–94% cover for a species with an actual cover of 50%. Transect and random methods were likely to miss rare species entirely unless large numbers of quadrats were sampled. NCVS plots produced the most accurate cover estimates because they sampled the largest area. Total species richness calculated using semilog species-area curves was overestimated by transect and random sampling. Both multiscale methods, the modified Whittaker and the NCVS plots, overestimated species richness when patchiness was low, and underestimated it when patchiness was high. There was no clear distinction between the nested NCVS or the non-nested modified Whittaker plot for any of the measures assessed. For all sampling methods, cover and especially frequency estimates were highly variable, and depended on both the level of autocorrelation and the sampling method used. The spatial structure of the vegetation must be considered when choosing field sampling protocols or comparing results between studies that used different methods.  相似文献   

4.
Foraging affects survival and reproductive success in animals, including flower-visiting insects. Plant-derived floral food resources (i.e. nectar and pollen) may be rapidly changing in space and time and pollinators may need to quickly switch to new resources. Butterflies are suitable model organisms to investigate foraging behaviour of insect pollinators, because they can be easily monitored under natural conditions. We studied flower visitation patterns in the Clouded Apollo butterfly Parnassius mnemosyne in relation to the abundance of available floral resources. We recorded flower visitation daily in individually marked butterflies, listed flowering species and estimated flower abundance categories every 3 days in a single meadow, during five consecutive flight periods. Butterflies visited 35 nectar plants from the 71 species available. Few nectar plants were frequently visited (visit ratios for the annually most visited species: 37–60%), many were scarcely visited and no visits were observed on several abundant species. Flower abundance and visit ratio varied among years and within flight periods. The number of visits increased with flower abundance in the seven most frequently visited plant species, but not in the occasionally visited ones. Beside their choosiness, Parnassius mnemosyne butterflies were able to adjust foraging behaviour to rapidly changing resource distributions. Diet selectivity in adults might increase the vulnerability of this species. However, visitation plasticity may mitigate the effect of the lack of some nectar plants, as complementary resources can be used as alternatives.  相似文献   

5.
Thirteen surface moss samples were collected for pollen analysis from an area of heathland in western Norway. Vegetation composition at different distances around the sampling locations was measured using three different survey methods; rooted frequency within a sub-divided 1 m × 1 m quadrat, visual estimates of cover within a 1 m × 1 m quadrat and a modified form of the ‘circle-walking method’. Extended R-value analysis was used to explore the pollen–vegetation relationships for five main taxa, Calluna vulgaris, Vaccinium-type, Cyperaceae, Poaceae and Potentilla-type. The estimates of relevant source area of pollen obtained were similar regardless of the vegetation survey method. Values obtained were always under 4 m. However, estimates of relative pollen productivity and the background pollen component (proportion of pollen coming from vegetation growing beyond the relevant source area of pollen) differ markedly depending on the method of vegetation survey chosen. This has important implications for the quantitative reconstruction of past vegetation cover.  相似文献   

6.
Cover is the most frequently used measure of abundance in vegetation surveys of grasslands, and various qualitative and semi-quantitative methods have been developed for visual estimation of this metric. Field survey is usually made with a point-grid plate. The frequency distributions of cover derived from point-grid counts follow a beta distribution. Combining point-grid counts from a field survey and the beta distribution for a statistical analysis, we developed an effort-saving cover-measurement method. Cover is measured with a transparent plastic plate on which, for example, 10 × 10 = 100 points are arranged in a lattice with 1-cm grid spacing (thus, one point count represents 1 cm2 of cover). N quadrats are set out at randomly dispersed sites in a grassland, and, in each, the plastic plate is used for making counts. The number of grid points located above a given species is counted in every quadrat until the number of counted points reaches a given value c, which is determined in advance. If the number of counted points reaches c in a quadrat, the count is stopped and the quadrat is classified in the category “>c”. In quadrats where c is not attained, full point counts above the species bodies are made. Let g be the number of observed quadrats whose cover is ≤c. Using these g cover measurements and the number of quadrats (N − g) with cover >c, we can quantitatively estimate cover for each species and the spatial pattern index value based on the maximum likelihood method. In trial counts using this method, the time savings varied between 5% and 41%, depending on the shape of the cover frequency distribution. The mean cover value estimates agreed well with conventional measures without a stopping point (i.e., based on full counts of all points in each quadrat).  相似文献   

7.
Plant censuses are known to be significantly affected by observers’ biases. In this study, we checked whether the magnitude of observer effects (defined as the % of total variance) varied with quadrat size: we expected the census repeatability (% of the total variance that is not due to measurement errors) to be higher for small quadrats than for larger ones. Variations according to quadrat size of the repeatability of species richness, Simpson equitability and reciprocal diversity indices, Ellenberg indicator values, plant cover and plant frequency were assessed using 359 censuses of vascular plants. These were carried out independently by four professional botanists during spring 2002 on the same 18 forest plots, each comprising one 400-m2 quadrat, four 4-m2 and four 2-m2 quadrats. Time expenditure was controlled for. General Linear Models using random effects only were applied to the ecological indices to estimate variance components and magnitude of the following effects (if possible): plot, quadrat, observer, plant species and two-way interactions. High repeatability was obtained for species richness and Ellenberg indicator values. Species richness and Ellenberg indicator values were generally more accurate but also more biased in large quadrats. Simpson reciprocal diversity and equitability indices were poorly repeatable (especially equitability) probably because plant cover estimates varied widely among observers, irrespective of quadrat size. Grouping small quadrats usually increased the repeatability of the variable considered (e.g. species richness, Simpson diversity, plant cover) but the number of plant species found on those pooled 16 m2 was much lower than if large plots were sampled. We therefore recommend to use large, single quadrats for forest vegetation monitoring.  相似文献   

8.
We compared the two most commonly used sampling methods, pitfall trapping and quadrat sieving, to study community diversity and talitrid abundance on sandy beaches. They are both widely used methods, however they are related to different behaviors: surface activity (pitfall traps) and burrowing in the substrate (quadrat sieving). To detect bias intrinsically generated by the use of different sampling methods, we applied both methods on a set of five beaches in New South Wales, Australia. The set included non-contiguous beaches, exposed and sheltered, more or less affected by recreational use. The results indicated a high fluctuation in biodiversity features. However, the most human-frequented beaches were grouped together by Multi Dimensional Scaling, and substrate-modifiers talitrid amphipods (sand-hoppers), played a major role in this scaling. The analysis of similarities (ANOSIM) indicated the roles of exposure and human recreational use in shaping the community, while the methods (quadrats vs. traps) resulted in higher fluctuation within samples than between, and informative outliers. Generalized Linear Models developed to estimate the probability of capture of talitrids by sampling method pointed to a higher probability to capture both sand-hoppers and beach-hoppers with the quadrat method. We finally suggest: (1) the comparative use of both sampling methods whenever possible, to capture multiple information and avoid bias in biodiversity estimates; and (2) an ad-hoc strategy when dealing with target populations. In particular, attention should be paid when targeting co-occurring talitrid species characterized by different ecology and behavioral traits: sand-hoppers (substrate modifiers) appeared to be more sensitive than beach-hoppers (non-substrate modifiers) to the impacts considered. In terms of biodiversity assessment the methods were equal, but for talitrid sampling quadrat sieving was more efficient.  相似文献   

9.
10.
Question: How may sampling time affect exhaustiveness of vegetation censuses in interaction with observer effect and quadrat species richness? Location: French lowland forests. Methods: Two data sets comprised of 75 timed, one‐hour censuses of vascular plants carried out by five observers on 24 400‐m2 forest quadrats were analysed using mixed‐effect models. Results: The level of exhaustiveness increased in a semi‐logarithmic way with sampling time and decreased with quadrat species richness. After one hour, 20 to 30% of the species remained undetected by single observers. This proportion varied among observers and the discrepancy increased with increasing sampling time. Fixing the sampling time may make richness estimates vary less between observers but the time limit should be at least 30 min to reduce the bias in exhaustiveness between rich and poor quadrats. Conclusions We advocate the use of sampling methods based on spatially or temporally‐replicated censuses and statistical analyses that correct for the lack of census exhaustiveness in vegetation studies.  相似文献   

11.
Jimena Dorado  Diego P. Vázquez 《Oikos》2014,123(9):1137-1143
The diversity–stability hypothesis posits that species diversity confers redundancy in function, so that richer communities show higher temporal stability in ecosystem processes than poorer communities. The diversity–stability relationship has not been studied in terms of flower production before. A diverse flower community may stabilize the availability of floral resources along the floral season. Considering this type of stability is important because it could promote the stability and persistence of the pollination service. We evaluated 1) the diversity–stability relationship in floral production along a flowering season; 2) the effect of additional factors that could blur the diversity–stability relationship, such as flower abundance, elevation, and the time elapsed since the last fire, a common human disturbance in the study area; and 3) whether the most important plants for pollinators in terms of interspecific interactions contribute differentially to temporal stability. The most diverse communities were more stable in floral resource production along the flowering season. Stability of flower production was also influenced by a positive indirect effect of elevation. The plants that contributed the most to temporal stability were the most abundant and densely connected species, those at the core of the plant–pollinator network. Our study shows that species richness enhances the availability of floral resources for pollinators, providing a strong support for the diversity–stability hypothesis.  相似文献   

12.
This paper reports on the results of a transect analysis carried out in order to detect small-scale patterns ofAvenetum species in a limestone grassland on the Great Alvar on the Baltic island of Öland, Sweden. Three transects consisting of 500 10×10 cm quadrats were used. The cover and number of flowering stalks (if any) of the 21 most common species were recorded. In addition the total cover of vascular plants, cover of mosses and lichens, cover of cow dung and soil depth in each quadrat were recorded. Ellenberg indicator values for light, moisture, reaction and nitrogen were calculated for each quadrat as weighted averages of the values for the species included in the analysis. Patch size frequency analysis, PASFRAN, a new method for detecting patches and their sizes, revealed that 42% of all significant species patches detected had mean patch sizes (diameter) in the range of 26–50 cm, which matched the size of dung patches—49 cm in transect 1 and 30 cm in transect 2. Results of association analysis revealed correlations for several species pairs and between species and environmental factors with similar patch sizes. Combination of PASFRAN and association analysis is recommended as an effective method for pattern detection.  相似文献   

13.
We have tested both the usefulness of high-resolution digital photography for data acquisition and digital image analysis, by non-supervised classification and high pass filter, for recognition and abundance estimation of benthic intertidal organisms. These digital tools were compared with visual scan and photo quadrat conventional methods. The comparison was done using 40 quadrats (10×5 cm) randomly selected along a 5-m transect on the rocky shore of the Pemaquid Point, Maine, USA. ANOVA for repeated measures was used to test differences among methods. Monte Carlo simulation analysis was used to explore differences among methods over a large set of data (n=100, 500, 1000 quadrats). Differences among methods were observed when 40 quadrats were used. Tukey multiple comparison test showed that abundance estimation from visual scan, photo quadrat and digital image analysis by high pass filter do not differ significantly among them but differ from non-supervised classification results. Due to its accurate estimation, high pass filter (Prewitt) method was chosen as the most reliable digital method to estimate species abundance. Monte Carlo simulation of visual scan, photo quadrat and high pass filter results showed significant differences when the number of quadrats was larger. These results showed that the combined use of digital photography and digital image analysis techniques for the acquisition and analysis of recorded data is a powerful method for the study of intertidal benthic organisms. Results produced using these techniques were similar than those produced by conventional methods but were obtained in a much-reduced time.  相似文献   

14.
Diversity estimates play a key role in ecological assessments. Species richness and abundance are commonly used to generate complex diversity indices that are dependent on the quality of these estimates. As such, there is a long‐standing interest in the development of monitoring techniques, their ability to adequately assess species diversity, and the implications for generated indices. To determine the ability of substratum community assessment methods to capture species diversity, we evaluated four methods: photo quadrat, point intercept, random subsampling, and full quadrat assessments. Species density, abundance, richness, Shannon diversity, and Simpson diversity were then calculated for each method. We then conducted a method validation at a subset of locations to serve as an indication for how well each method captured the totality of the diversity present. Density, richness, Shannon diversity, and Simpson diversity estimates varied between methods, despite assessments occurring at the same locations, with photo quadrats detecting the lowest estimates and full quadrat assessments the highest. Abundance estimates were consistent among methods. Sample‐based rarefaction and extrapolation curves indicated that differences between Hill numbers (richness, Shannon diversity, and Simpson diversity) were significant in the majority of cases, and coverage‐based rarefaction and extrapolation curves confirmed that these dissimilarities were due to differences between the methods, not the sample completeness. Method validation highlighted the inability of the tested methods to capture the totality of the diversity present, while further supporting the notion of extrapolating abundances. Our results highlight the need for consistency across research methods, the advantages of utilizing multiple diversity indices, and potential concerns and considerations when comparing data from multiple sources.  相似文献   

15.
Monitoring is an essential step to assess vegetation trajectories post-restoration and ultimately evaluate success. In this paper, we compare two monitoring methods, the line-point intercept (LPI) and the permanent plot (PP) methods, for evaluating plant recovery of a restored cut-over peatland (8.5 ha), following a “moss layer transfer technique”. We used the LPI method to estimate covers (from frequency measures) for each plant species using a systematic grid of approximately 5,700 points (every 3 m × 5 m). In parallel, 43 PP (3 m × 8 m) were established and used to evaluate plant covers. The post-restoration recovery of vegetation was assessed against a reference ecosystem encompassing the variation in species cover from natural undisturbed peatlands in the same region. For all plant groups considered, the LPI consistently showed higher cover estimates than the PP method. Discrepancy between the two methods was particularly evident for the Ericaceae group. A complementary sampling method, the line-intercept (LI), showed strong correlations with the visual estimations of Ericaceae covers (akin to PP), suggesting an overestimation from the LPI method. Most life form groups of the restored peatlands are developing a structure similar to the regional reference ecosystem 8 years post-restoration with the herb group being still most dissimilar. Indeed, when analyzing the temporal evolution of the different key peatland plant components, several are within the range of regional abundance values or moving positively towards range of cover abundance of the reference system such as Sphagnum cover, a key peat-accumulating plant group.  相似文献   

16.
Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter‐row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter‐rows or in viticultural landscapes. Inter‐row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi‐quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.  相似文献   

17.
While best practices for evaluating restoration ecology projects are emerging rapidly, budget constraints often limit postrestoration monitoring, which emphasizes the need for practical and efficient monitoring strategies. We examined the postrestoration outcome for an ENGO (Nature Conservancy of Canada) project, to assess retroactively how variation in intensity and frequency of sampling would have affected estimates of plant species composition, diversity, and richness over time. The project restored four habitat types (mesic forest, oak woodland, wet meadow, and sand barren) using sculptured seeding of tallgrass prairie and woody species. Species‐level plant cover was monitored annually for 10 years in 168 2 × 2–m quadrats. We performed randomization tests to examine estimates of species diversity and richness as a function of the number of quadrats sampled, and assessed the necessity of annual sampling for describing changes in species composition and successional trajectories. The randomization tests revealed that sampling 10–17 quadrats, depending on habitat type, was sufficient to obtain estimates of species diversity that were at least 95% of values obtained from the whole dataset. Species richness as a function of number of quadrats sampled did not plateau, which suggests that rather than increasing the number of sampling quadrats, richness could be estimated more efficiently using nonquadrat based sampling techniques. Nonmetric multidimensional scaling analysis revealed that plant species composition largely stabilized by 3–5 years postrestoration depending on habitat type. By that time, native, seeded species dominated the restoration, and the benefits of annual sampling for tracking changes in species composition diminished.  相似文献   

18.
Abundance estimates are used to establish baselines, set recovery targets, and assess management actions, all of which are essential aspects of evidence-based natural resource management. For many rare butterflies, these estimates do not exist, and conservation decisions rely instead on expert opinion. Using Bartram’s scrub-hairstreak (Strymon acis bartrami, US Endangered) as a case study, we present a novel comparison of two methods that permit the incorporation of detection probabilities into abundance estimates, distance sampling and double-observer surveys. Additionally we provide a framework for establishing a systematic sampling scheme for monitoring very rare butterflies. We surveyed butterflies monthly in 2013, increasing intensity to weekly when butterflies were detected. We conducted 19 complete, island-wide surveys on Big Pine Key in the Florida Keys, detecting a total of 59 Bartram’s scrub-hairstreaks across all surveys. Peak daily abundances were similar as estimated with distance sampling, 156 butterflies (95 % CI 65–247), and double-observer, 169 butterflies (95 % CI 65–269). Selecting a method for estimating abundance of rare species involves evaluating trade-offs between methods. Distance sampling requires at least 40 detections, but only one observer, while double-observer requires only 10 detections, but two observers. Double-observer abundance estimates agreed with distance sampling estimates, which suggests that double-observer is a reasonable alternative method to use for estimating detection probability and abundance for rare species that cannot be surveyed with other, more commonly used methods.  相似文献   

19.
Invasive plant species succeed because they are able to propagate and disperse into unoccupied habitat, outcompete and suppress other plant species or use a combination of these two strategies. Ecosystems are often invaded by multiple species and it is important to determine which species are likely to dominate plant communities through competition and which species will succeed by other means. We assessed frequency and abundance of 65 invasive species over 1700 km of riparian zone in the Burdekin catchment of North Queensland, Australia and established a dominance hierarchy for those species. The cover of every invasive and one native shrub known to have increased in abundance in historical times, was surveyed in quadrats as part of a nested hierarchical design consisting of 8030 quadrats, within 803 transects, within 90 sites. Total species cover and species frequency were derived from the results of this survey. We estimated the pairwise interactions between individual species and used a non‐parametric David Score to rank species and construct a competition hierarchy of invasive species at the quadrat and transect levels. Species frequency and cover were highly correlated (r2 = 0.81). The competition hierarchy of species at the quadrat level was moderately related to species cover, but poorly related to species frequency (r2 = 0.24 and 0.02). The competition rank of many species, including Urochloa mosambicensis and Parthenium hysterophorus, changed markedly with scale when assessed at the quadrat and transect levels. This suggests different processes influenced their competitive success at different scales. This technique enabled us to explore and accept the hypothesis that abundant species are often the most competitive. However, some exceptions were identified in this study and these species may in time become more abundant in the catchment.  相似文献   

20.
Termites are frequently dominant invertebrate decomposers and bioturbators in lowland tropical forests and therefore strongly influence ecosystem processes favouring soil stability, porosity and nutrient retention. In this study, we provide the first spatially replicated dataset on termite assemblage composition, abundance and biomass in a Peruvian rainforest by sampling six separate plots. In addition, two alternative sampling methods (transect method-TM and quadrat method-QM), providing termite species density data, were compared among the plots. The relationships between a range of environmental and spatial variables and species composition were examined using canonical correspondence analysis variation partitioning. We found that the TM captured a higher proportion of the known species in the site (82 %) compared with the QM (66 %). In addition, 56 % of the species sampled by TM were common between the plots while only 18 % of species overlapped using the QM. The QM may therefore potentially have undersampled the species pool. Environmental variables were shown to explain a larger proportion of the species patterns than the spatial variables with elevation, soil temperature and distance to the river being the most important. We discuss the impacts of the environmental and spatial variables on termite species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号