首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin E: function and metabolism.   总被引:32,自引:0,他引:32  
Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.  相似文献   

2.
Carboxyethyl-6-hydroxychromans (CEHC), the major metabolites of both tocopherols (Toc) and tocotrienols (Toc-3), have been found in human plasma. In the present study, the antioxidant properties of alpha- and gamma-CEHC were measured and compared with alpha- and gamma- tocopherols. Following results were obtained: (1)alpha- and gamma-CEHC have the same reactivities toward radicals and exert the same antioxidant activities against lipid peroxidation in organic solution as the corresponding parent tocopherols respectively; (2) the partition coefficient decreased in the order alpha-Toc (3.36) > gamma-Toc (3.14) > alpha-CEHC (2.26) > pentamethyl-6-chromanol (1.92) > gamma-CEHC (1.83) > 0 > Trolox (-0.97); (3) alpha- and gamma-CEHC scavenge aqueous radicals more efficiently but they inhibit the lipid peroxidation within the membranes less efficiently than the corresponding alpha- and gamma-Toc, respectively; (4) alpha-CEHC inhibits the oxidation synergistically with ascorbate; and (5) alpha- and gamma-CEHC reduce Cu(II) to give Cu(I) and corresponding quinones as major product, but the prooxidant effect of CEHC in the presence of cupric ion was small. These results imply that CEHC may act as an antioxidant in vivo especially for those who take tocopherol supplement.  相似文献   

3.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-alpha-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between alpha-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the "alpha-tocopherol transfer protein", a major proportion of alpha-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of alpha-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including alpha-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of alpha-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.  相似文献   

4.
The vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol (αT) is the predominant form of vitamin E in tissues and its deficiency leads to ataxia in humans. However, results from many clinical studies do not support a protective role of αT in disease prevention in people with adequate nutrient status. On the other hand, recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of αT in prevention and therapy against chronic diseases. These vitamin E forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids, and suppress proinflammatory signaling such as NF-κB and STAT3/6. Unlike αT, other vitamin E forms are significantly metabolized to carboxychromanols via cytochrome P450-initiated side-chain ω-oxidation. Long-chain carboxychromanols, especially 13′-carboxychromanols, are shown to have stronger anti-inflammatory effects than unmetabolized vitamins and may therefore contribute to the beneficial effects of vitamin E forms in vivo. Consistent with mechanistic findings, animal and human studies show that γT and tocotrienols may be useful against inflammation-associated diseases. This review focuses on non-αT forms of vitamin E with respect to their metabolism, anti-inflammatory effects and mechanisms, and in vivo efficacy in preclinical models as well as human clinical intervention studies.  相似文献   

5.
Vitamin E is a fat-soluble vitamin that consists of a group of tocols and tocotrienols with hydrophobic character, but possessing a hydroxyl substituent that confers an amphipathic character on them. The isomers of biological importance are the tocopherols, of which alpha-tocopherol is the most potent vitamin. Vitamin E partitions into lipoproteins and cell membranes, where it represents a minor constituent of most membranes. It has a major function in its action as a lipid antioxidant to protect the polyunsaturated membrane lipids against free radical attack. Other functions are believed to be to act as membrane stabilizers by forming complexes with the products of membrane lipid hydrolysis, such as lysophospholipids and free fatty acids. The main experimental approach to explain the functions of vitamin E in membranes has been to study its effects on the structure and stability of model phospholipid membranes. This review describes the function of vitamin E in membranes and reviews the current state of knowledge of the effect of vitamin E on the structure and phase behaviour of phospholipid model membranes.  相似文献   

6.
Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. Structurally, natural vitamin E includes eight chemically distinct molecules: -, β-, γ- and δ-tocopherol; and -, β-, γ- and δ-tocotrienol. Symptoms caused by -tocopherol deficiency can be alleviated by tocotrienols. Thus, tocotrienols may be viewed as being members of the natural vitamin E family not only structurally but also functionally. Palm oil and rice bran oil represent two major nutritional sources of natural tocotrienol. Taken orally, tocotrienols are bioavailable to all vital organs. The tocotrienol forms of natural vitamin E possesses powerful hypocholesterolemic, anti-cancer and neuroprotective properties that are often not exhibited by tocopherols. Oral tocotrienol protects against stroke-associated brain damage in vivo. Disappointments with outcomes-based clinical studies testing the efficacy of -tocopherol need to be handled with caution and prudence recognizing the untapped opportunities offered by the other forms of natural vitamin E. Although tocotrienols represent half of the natural vitamin E family, work on tocotrienols account for roughly 1% of the total literature on vitamin E. The current state of knowledge warrants strategic investment into investigating the lesser known forms of vitamin E.  相似文献   

7.
Matringe M  Ksas B  Rey P  Havaux M 《Plant physiology》2008,147(2):764-778
Vitamin E is a generic term for a group of lipid-soluble antioxidant compounds, the tocopherols and tocotrienols. While tocotrienols are considered as important vitamin E components in humans, with functions in health and disease, the protective functions of tocotrienols have never been investigated in plants, contrary to tocopherols. We took advantage of the strong accumulation of tocotrienols in leaves of double transgenic tobacco (Nicotiana tabacum) plants that coexpressed the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene (PDH) and the Arabidopsis (Arabidopsis thaliana) hydroxyphenylpyruvate dioxygenase gene (HPPD) to study the antioxidant function of those compounds in vivo. In young leaves of wild-type and transgenic tobacco plants, the majority of vitamin E was stored in thylakoid membranes, while plastoglobules contained mainly delta-tocopherol, a very minor component of vitamin E in tobacco. However, the vitamin E composition of plastoglobules was observed to change substantially during leaf aging, with alpha-tocopherol becoming the major form. Tocotrienol accumulation in young transgenic HPPD-PDH leaves occurred without any significant perturbation of photosynthetic electron transport. Tocotrienols noticeably reinforced the tolerance of HPPD-PDH leaves to high light stress at chilling temperature, with photosystem II photoinhibition and lipid peroxidation being maintained at low levels relative to wild-type leaves. Very young leaves of wild-type tobacco plants turned yellow during chilling stress, because of the strongly reduced levels of chlorophylls and carotenoids, and this phenomenon was attenuated in transgenic HPPD-PDH plants. While sugars accumulated similarly in young wild-type and HPPD-PDH leaves exposed to chilling stress in high light, a substantial decrease in tocotrienols was observed in the transgenic leaves only, suggesting vitamin E consumption during oxygen radical scavenging. Our results demonstrate that tocotrienols can function in vivo as efficient antioxidants protecting membrane lipids from peroxidation.  相似文献   

8.
Vitamin E and its function in membranes   总被引:10,自引:0,他引:10  
Vitamin E is a fat-soluble vitamin. It is comprised of a family of hydrocarbon compounds characterised by a chromanol ring with a phytol side chain referred to as tocopherols and tocotrienols. Tocopherols possess a saturated phytol side chain whereas the side chain of tocotrienols have three unsaturated residues. Isomers of these compounds are distinguished by the number and arrangement of methyl substituents attached to the chromanol ring. The predominant isomer found in the body is alpha-tocopherol, which has three methyl groups in addition to the hydroxyl group attached to the benzene ring. The diet of animals is comprised of different proportions of tocopherol isomers and specific alpha-tocopherol-binding proteins are responsible for retention of this isomer in the cells and tissues of the body. Because of the lipophilic properties of the vitamin it partitions into lipid storage organelles and cell membranes. It is, therefore, widely distributed in throughout the body. Subcellular distribution of alpha-tocopherol is not uniform with lysosomes being particularly enriched in the vitamin compared to other subcellular membranes. Vitamin E is believed to be involved in a variety of physiological and biochemical functions. The molecular mechanism of these functions is believed to be mediated by either the antioxidant action of the vitamin or by its action as a membrane stabiliser. alpha-Tocopherol is an efficient scavenger of lipid peroxyl radicals and, hence, it is able to break peroxyl chain propagation reactions. The unpaired electron of the tocopheroxyl radical thus formed tends to be delocalised rendering the radical more stable. The radical form may be converted back to alpha-tocopherol in redox cycle reactions involving coenzyme Q. The regeneration of alpha-tocopherol from its tocopheroxyloxyl radical greatly enhances the turnover efficiency of alpha-tocopherol in its role as a lipid antioxidant. Vitamin E forms complexes with the lysophospholipids and free fatty acids liberated by the action of membrane lipid hydrolysis. Both these products form 1:1 stoichiometric complexes with vitamin E and as a consequence the overall balance of hydrophobic:hydrophillic affinity within the membrane is restored. In this way, vitamin E is thought to negate the detergent-like properties of the hydrolytic products that would otherwise disrupt membrane stability. The location and arrangement of vitamin E in biological membranes is presently unknown. There is, however, a considerable body of information available from studies of model membrane systems consisting of phospholipids dispersed in aqueous systems. From such studies using a variety of biophysical methods, it has been shown that alpha-tocopherol intercalates into phospholipid bilayers with the long axis of the molecule oriented parallel to the lipid hydrocarbon chains. The molecule is able to rotate about its long axis and diffuse laterally within fluid lipid bilayers. The vitamin does not distribute randomly throughout phospholipid bilayers but forms complexes of defined stoichiometry which coexist with bilayers of pure phospholipid. alpha-Tocopherol preferentially forms complexes with phosphatidylethanolamines rather than phosphatidylcholines, and such complexes more readily form nonlamellar structures. The fact that alpha-tocopherol does not distribute randomly throughout bilayers of phospholipid and tends to form nonbilayer complexes with phosphatidylethanolamines would be expected to reduce the efficiency of the vitamin in its action as a lipid antioxidant and to destabilise rather than stabilise membranes. The apparent disparity between putative functions of vitamin E in biological membranes and the behaviour in model membranes will need to be reconciled.  相似文献   

9.
Natural vitamin E includes four tocopherols and four tocotrienols. RRR-α-tocopherol is the most abundant form in nature and has the highest biological activity. Although vitamin E is the main lipid-soluble antioxidant in the body, not all its properties can be assigned to this action. As antioxidant, vitamin E acts in cell membranes where prevents the propagation of free radical reactions, although it has been also shown to have pro-oxidant activity. Non-radical oxidation products are formed by the reaction between α-tocopheryl radical and other free radicals, which are conjugated to glucuronic acid and excreted through the bile or urine. Vitamin E is transported in plasma lipoproteins. After its intestinal absorption vitamin E is packaged into chylomicrons, which along the lymphatic pathway are secreted into the systemic circulation. By the action of lipoprotein lipase (LPL), part of the tocopherols transported in chylomicrons are taken up by extrahepatic tissues, and the remnant chylomicrons transport the remaining tocopherols to the liver. Here, by the action of the “α-tocopherol transfer protein”, a major proportion of α-tocopherol is incorporated into nascent very low density lipoproteins (VLDL), whereas the excess of α-tocopherol plus the other forms of vitamin E are excreted in bile. Once secreted into the circulation, VLDL are converted into IDL and LDL by the action of LPL, and the excess of surface components, including α-tocopherol, are transferred to HDL. Besides the LPL action, the delivery of α-tocopherol to tissues takes place by the uptake of lipoproteins by different tissues throughout their corresponding receptors. Although we have already a substantial information on the action, effects and metabolism of vitamin E, there are still several questions open. The most intriguing is its interaction with other antioxidants that may explain how foods containing small amounts of vitamin E provide greater benefits than larger doses of vitamin E alone.  相似文献   

10.
生育三烯酚的生理功能及合成代谢调控   总被引:1,自引:0,他引:1  
维生素E是一种重要的脂溶性抗氧化剂。天然维生素E包括α-、β-、γ-和δ-生育酚及α-、β-、γ-和δ-生育三烯酚等8种组分。生育三烯酚具有独特的降低胆固醇、抗癌和神经保护功能,这些功能是生育酚所不具备的。生育三烯酚主要由谷物等单子叶植物合成。虽然生育三烯酚成分占天然维生素E的一半,但有关生育三烯酚的研究仅占维生素E全部文献的1%。可喜的是,近年来这一领域的研究取得了较大的进展。我们就生育三烯酚在人体内的生理功能、来源、生物合成及代谢调控等方面的进展进行概述。  相似文献   

11.
Roy S  Lado BH  Khanna S  Sen CK 《FEBS letters》2002,530(1-3):17-23
Vitamin E (tocopherols and tocotrienols) is essential for normal neurological function. Recently we have reported that the neuroprotective properties of tocotrienols are much more potent than that of the widely studied tocopherols (Sen, C.K., Khanna, S., Roy, S. and Parker, L. (2000) J. Biol. Chem. 275, 13049–13055). The objective of this study was to evaluate whether (i) oral supplementation of tocotrienols during pregnancy is bioavailable to fetal and mother brains; (ii) short-term change in dietary vitamin E levels of pregnant rats influences gene expression profile of developing fetal brains. We report that dietary tocotrienol is bioavailable to both mother and fetal brains. The enrichment is more in fetal brain tissue. Using a GeneChip microarray expression profiling approach we have identified a specific set of vitamin E sensitive genes in the developing rat fetal brain.  相似文献   

12.
Tocopherols and tocotrienols have been originally identified as essential nutrients in mammals based on their vitamin E activity. These lipid-soluble compounds are potent antioxidants that protect polyunsaturated fatty acids from lipid peroxidation. The biosynthesis of tocopherols and tocotrienols occurs exclusively in photosynthetic organisms. The biosynthetic precursors and the different pathway intermediates have been identified by biochemical studies and the different vitamin E biosynthetic genes (VTE genes) have been isolated in several plants and cyanobacteria. The characterization of transgenic plants overexpressing one or multiple VTE genes combined with the study of vitamin E deficient mutants allows from now on understanding the regulation and the function of tocopherols and tocotrienols in plants.  相似文献   

13.
Ubiquinones and tocopherols (vitamin E) are intrinsic lipid components which have a stabilizing function in many membranes attributed to their antioxidant activity. The antioxidant effects of tocopherols are due to direct radical scavenging. Although ubiquinones also exert antioxidant properties the specific molecular mechanisms of their antioxidant activity may be due to: (i) direct reaction with lipid radicals or (ii) interaction with chromanoxyl radicals resulting in regeneration of vitamin E. Lipid peroxidation results have now shown that tocopherols are much stronger membrane antioxidants than naturally occurring ubiquinols (ubiquinones). Thus direct radical scavenging effects of ubiquinols (ubiquinones) might be negligible in the presence of comparable or higher concentrations of tocopherols. In support of this our ESR findings show that ubiquinones synergistically enhance enzymic NADH- and NADPH-dependent recycling of tocopherols by electron transport in mitochondria and microsomes. If ubiquinols were direct radical scavengers their consumption would be expected. Further proving our conclusion HPLC measurements demonstrated that ubiquinone-dependent sparing of tocopherols was not accompanied by ubiquinone consumption.  相似文献   

14.
Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants.  相似文献   

15.
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley and certain types of nuts and grains. Vegetable oils provide the best sources of these vitamin E forms, particularly palm oil and rice bran oil contain higher amounts of tocotrienols. Other sources of tocotrienols include grape fruit seed oil, oats, hazelnuts, maize, olive oil, buckthorn berry, rye, flax seed oil, poppy seed oil and sunflower oil. Tocotrienols are of four types, viz. alpha (α), beta (β), gamma (γ) and delta (δ). Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. A number of researchers have developed methods for the extraction, analysis, identification and quantification of different types of vitamin E compounds. This article constitutes an in-depth review of the chemistry and extraction of the unsaturated vitamin E derivatives, tocotrienols, from various sources using different methods. This review article lists the different techniques that are used in the characterization and purification of tocotrienols such as soxhlet and solid–liquid extractions, saponification method, chromatography (thin layer, column chromatography, gas chromatography, supercritical fluid, high performance), capillary electrochromatography and mass spectrometry. Some of the methods described were able to identify one form or type while others could analyse all the analogues of tocotrienol molecules. Hence, this article will be helpful in understanding the various methods used in the characterization of this lesser known vitamin E variant.  相似文献   

16.
Tocotrienols are the primary form of vitamin E in seeds of most monocot plants, including cereals such as rice and wheat. As potent antioxidants, tocotrienols contribute to the nutritive value of cereal grains in human and livestock diets. cDNAs encoding homogentisic acid geranylgeranyl transferase (HGGT), which catalyzes the committed step of tocotrienol biosynthesis, were isolated from barley, wheat and rice seeds. Transgenic expression of the barley HGGT in Arabidopsis thaliana leaves resulted in accumulation of tocotrienols, which were absent from leaves of nontransformed plants, and a 10- to 15-fold increase in total vitamin E antioxidants (tocotrienols plus tocopherols). Overexpression of the barley HGGT in corn seeds resulted in an increase in tocotrienol and tocopherol content of as much as six-fold. These results provide insight into the genetic basis for tocotrienol biosynthesis in plants and demonstrate the ability to enhance the antioxidant content of crops by introduction of an enzyme that redirects metabolic flux.  相似文献   

17.
Vitamin E occurs in all photosynthetic organisms examined to date. Tocopherols predominate in photosynthetic tissues (α-tocopherol being the major form), while either tocopherols or tocotrienols (or both) are present in seeds. Tocotrienols have not been described in photosynthetic tissues thus far. Here, we report on the presence of tocotrienols in leaves of higher plants. Both tocopherols and tocotrienols accumulated in leaves of Vellozia gigantea, an endemic plant found in the rupestrian fields of Serra do Cipó, Brazil. Increased plant size had a remarkable effect on the vitamin E composition of leaves, α-tocopherol and β-tocotrienol levels being highest in the largest individuals, but only during the dry season. Vitamin E levels positively correlated with lipid hydroxyperoxide levels, which also increased in the largest individuals during the dry season. However, the maximum efficiency of PSII photochemistry (F v/F m ratio) kept above 0.75 throughout the experiment, thus indicating absence of photoinhibitory damage to the photosynthetic apparatus. It is concluded that higher plants, such as V. gigantea, can accumulate tocotrienols in leaves, aside from tocopherols, and that the levels of both tocopherols and tocotrienols in the leaves of this species are strongly modulated by seasonal and plant size effects.  相似文献   

18.
Probably most diseases at some point during their course involve free radical reactions in tissue injury. In some cases, free radical reactions may be involved in multiple sites and at different stages of a chronic disease. So, both acute and degenerative diseases are thought to involve free radical reactions in tissue injury. An overview will be given of the evidence for the occurrence of free radicals and the importance of antioxidant interventions, with particular reference to the lipophilic antioxidant vitamin E (tocopherols and tocotrienols).  相似文献   

19.
Breast cancer is the leading site of new cancers in women and the second leading cause (after lung cancer) of cancer mortality in women. Observational studies that have collected data for dietary exposure to alpha-tocopherol with or without the other related tocopherols and tocotrienols have suggested that vitamin E from dietary sources may provide women with modest protection from breast cancer. However, there is no evidence that vitamin E supplements confer any protection whatever against breast cancer. Observational studies that have assessed exposure to vitamin E by plasma or adipose tissue concentrations of alpha-tocopherol have failed to provide consistent support for the idea that alpha-tocopherol provides any protection against breast cancer. In addition, evidence from studies in experimental animals suggest that alpha-tocopherol supplementation alone has little effect on mammary tumors. In contrast, studies in breast cancer cells indicate that alpha- gamma-, and delta-tocotrienol, and to a lesser extent delta-tocopherol, have potent antiproliferative and proapoptotic effects that would be expected to reduce risk of breast cancer. Many vegetable sources of alpha-tocopherol also contain other tocopherols or tocotrienols. Thus, it seems plausible that the modest protection from breast cancer associated with dietary vitamin E may be due to the effects of the other tocopherols and the tocotrienols in the diet. Additional studies will be required to determine whether this may be the case, and to identify the most active tocopherol/tocotrienol.  相似文献   

20.
Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (alpha,beta, gamma, delta) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, alpha-tocopherol (alphaT) and gamma-tocopherol (gammaT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (gammaT-enriched) tocopherols seems to be more potent than supplementation with alphaT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with alphaT only and thus warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号