首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Diphtheria toxin belongs to a group of toxic proteins that enter the cytosol of animal cells. We have here investigated the effect of NH2-terminal extensions of diphtheria toxin on its ability to become translocated to the cytosol. DNA fragments encoding peptides of 12-30 amino acids were fused by recombinant DNA technology to the 5'-end of the gene for a mutant toxin. The resulting DNA constructs were transcribed and translated in vitro. The translation products were bound to cells and then exposed to low pH to induce translocation across the cell membrane. Under these conditions all of the oligopeptides tested, including three viral peptides and the leader peptide of diphtheria toxin, were translocated to the cytosol along with the enzymatic part (A-fragment) of the toxin. Neither hydrophobic nor highly charged sequences blocked translocation. The results are compatible with a model in which the COOH-terminus of the A-fragment first crosses the membrane, whereas the NH2-terminal region follows behind. The possibility of using nontoxic variants of diphtheria toxin as vectors to introduce peptides into the cytosol to elicit MHC class I-restricted immune response and clonal expansion of the relevant CD8+ cytotoxic T lymphocytes is discussed.  相似文献   

2.
Treatment of Ca2(+)-ATPase from sarcoplasmic reticulum with V8 protease from Staphylococcus aureus produced appreciable amounts of a Ca2(+)-ATPase fragment (p85) in the presence of Ca2+ (E1 conformation of the enzyme), along with many other peptide fragments that were also formed in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (E2 conformation). p85 was formed as a carboxyl-terminal cleavage product of Ca2(+)-ATPase by a split of the peptide bond between Glu-231 and Ile-232. Other conformation-dependent V8 splits were localized to the "hinge" region, involved in ATP binding, between the middle and COOH-terminal one-third of the Ca2(+)-ATPase polypeptide chain. Representative split products in this region (p48,p31) were identified as NH2-terminal and COOH-terminal cleavage products of p85. In the membrane p85 probably remains associated with its complementary NH2-terminal fragment(s) and retains the capacity to bind Ca2+ as evidenced by resistance to V8 degradation in Ca2+ and ability to become phosphorylated by ATP. However, the hydrolysis rate of the phosphorylated enzyme is reduced, indicating that peptide cleavage at Glu-231 interferes with Ca2+ transport steps after phosphorylation. Binding of Ca2+ to V8 and tryptic fragments of Ca2(+)-ATPase was studied on the basis of Ca2(+)-induced changes in electrophoretic mobility and 45Ca2+ autoradiography after transfer of peptides to Immobilon membranes. These data indicate binding by the NH2-terminal 1-198 amino acid residues (corresponding to the tryptic A2 fragment) and the COOH-terminal 715-1001 amino acid residues (corresponding to p31). By contrast the central portion of Ca2(+)-ATPase, including the NH2-terminal portion of p85, is devoid of Ca2+ binding. These results question an earlier proposition that Ca2(+)-binding is located to the "stalk" region of Ca2(+)-ATPase (Brandl, C. J., Green, N. M., Korczak, B., and MacLennan, D. H.) (1986) Cell 44, 597-607) but are in agreement with recent data obtained by oligonucleotide-directed mutagenesis of Ca2(+)-ATPase (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476-478). These different studies suggest that Ca2+ translocation sites may have an intramembranous location and are formed predominantly by the carboxyl-terminal part of the Ca2(+)-ATPase polypeptide chain.  相似文献   

3.
The massive secretion of salt and water in cholera-induced diarrhea involves binding of cholera toxin (CT) to ganglioside GM1 in the apical membrane of intestinal epithelial cells, translocation of the enzymatically active A1-peptide across the membrane, and subsequent activation of adenylate cyclase located on the cytoplasmic surface of the basolateral membrane. Studies on nonpolarized cells show that CT is internalized by receptor-mediated endocytosis, and that the A1-subunit may remain membrane associated. To test the hypothesis that toxin action in polarized cells may involve intracellular movement of toxin-containing membranes, monolayers of the polarized intestinal epithelial cell line T84 were mounted in modified Ussing chambers and the response to CT was examined. Apical CT at 37 degrees C elicited a short circuit current (Isc: 48 +/- 2.1 microA/cm2; half-maximal effective dose, ED50 integral of 0.5 nM) after a lag of 33 +/- 2 min which bidirectional 22Na+ and 36Cl- flux studies showed to be due to electrogenic Cl- secretion. The time course of the CT-induced Isc response paralleled the time course of cAMP generation. The dose response to basolateral toxin at 37 degrees C was identical to that of apical CT but lag times (24 +/- 2 min) and initial rates were significantly less. At 20 degrees C, the Isc response to apical CT was more strongly inhibited (30-50%) than the response to basolateral CT, even though translocation occurred in both cases as evidenced by the formation of A1-peptide. A functional rhodamine-labeled CT-analogue applied apically or basolaterally at 20 degrees C was visualized only within endocytic vesicles close to apical or basolateral membranes, whereas movement into deeper apical structures was detected at 37 degrees C. At 15 degrees C, in contrast, reduction to the A1-peptide was completely inhibited and both apical and basolateral CT failed to stimulate Isc although Isc responses to 1 nM vasoactive intestinal peptide, 10 microM forskolin, and 3 mM 8Br-cAMP were intact. Re-warming above 32 degrees C restored CT-induced Isc. Preincubating monolayers for 30 min at 37 degrees C before cooling to 15 degrees C overcame the temperature block of basolateral CT but the response to apical toxin remained completely inhibited. These results identify a temperature-sensitive step essential to apical toxin action on polarized epithelial cells. We suggest that this event involves vesicular transport of toxin-containing membranes beyond the apical endosomal compartment.  相似文献   

4.
Role of anions in low pH-induced translocation of diphtheria toxin   总被引:1,自引:0,他引:1  
Previous work has shown that when Vero cells with surface-bound diphtheria toxin are exposed to low pH, toxin entry across the plasma membrane is induced and that this entry involves two steps, insertion of the B-fragment of the toxin into the membrane and translocation of the enzymatically active A-fragment to the cytosol. Here we have studied the role of permeant anions in this process. It was found that when the B-fragment was inserted into the membrane, part of it, a 25-kDa polypeptide, was shielded from externally added Pronase. This insertion did not require permeant anions. The translocation of the A-fragment was monitored by measuring either its ability to inhibit protein synthesis in the cells or the appearance of radioactively labeled 21-kDa fragment after treatment of the cells with externally applied Pronase. The translocation of the A-fragment was dependent on the presence of permeant anions in the medium. However, when the cells were depleted of Cl- by incubation in Cl- free buffer at high pH, translocation of the A-fragment did not require permeant anions in the medium. The possibility that translocation of the A-fragment is inhibited by an outward directed chloride gradient rather than by the absence of chloride is discussed.  相似文献   

5.
The pH and temperature stabilities of diphtheria toxin and its fragments have been studied by high-sensitivity differential scanning calorimetry. These studies demonstrate that the pH-induced conformational transition associated with the mechanism of membrane insertion and translocation of the toxin involves a massive unfolding of the toxin molecule. At physiological temperatures (37 degrees C), this process is centered at pH 4.7 at low ionic strength and at pH 5.4 in the presence of 0.2 M NaCl. At pH 8, the thermal unfolding of the nucleotide-bound toxin is centered at 58.2 degrees C whereas that of the nucleotide-free toxin is centered at 51.8 degrees C, indicating that nucleotide binding (ApUp) stabilizes the native conformation of the toxin. The unfolding profile of the toxin is consistent with two transitions most likely corresponding to the A fragment (Tm = 54.5 degrees C) and the B fragment (Tm = 58.4 degrees C), as inferred from experiments using the isolated A fragment. These two transitions are not independent, judging from the fact that the isolated A fragment unfolds at much lower temperatures (Tm = 44.2 degrees C) and that the B fragment is insoluble in aqueous solutions when separated from the A fragment. Interfragment association contributes an extra -2.6 kcal/mol to the free energy of stabilization of the A fragment. Whereas the unfolding of the entire toxin is irreversible, the unfolding of the A fragment is a reversible process. These findings provide a thermodynamic basis for the refolding of the A fragment after reexposure to neutral pH immediately following translocation across the lysosomal membrane.  相似文献   

6.
The membrane insertion of diphtheria toxin and of its B chain mutants crm 45, crm 228 and crm 1001 has been followed by hydrophobic photolabelling with photoactivatable phosphatidylcholine analogues. It was found that diphtheria toxin binds to the lipid bilayer surface at neutral pH while at low pH both its A and B chains also interact with the hydrocarbon chains of phospholipids. The pH dependence of photolabelling of the two protomers is different: the pKa of fragment B is around 5.9 while that of fragment A is around 5.2. The latter value correlates with the pH of half-maximal intoxication of cells incubated with the toxin in acidic mediums. These results suggest that fragment B penetrates into the bilayer first and assists the insertion of fragment A and that the lipid insertion of fragment B is not the rate-controlling step in the process of membrane translocation of diphtheria toxin. crm 45 behaves as diphtheria toxin in the photolabelling assay but, nonetheless, it is found to be three orders of magnitude less toxic than diphtheria toxin on acid-treated cells, suggesting that the 12-kDa COOH-terminal segment of diphtheria toxin is important not only for its binding to the cell receptor but also for the membrane translocation of the toxin. It is suggested that crm 1001 is non-toxic because of a defect in its membrane translocation which occurs at a lower extent and at a lower pH than that of the native toxin; as a consequence crm 1001 may be unable to escape from the endosome lumen into the cytoplasm before the fusion of the endosome with lysosomes.  相似文献   

7.
The role of specific receptors in the translocation of diphtheria toxin A fragment to the cytosol and for the insertion of the B fragment into the cell membrane was studied. To induce nonspecific binding to cells, toxin was either added at low pH, or biotinylated toxin was added at neutral pH to cells that had been treated with avidin. In both cases large amounts of diphtheria toxin became associated with the cells, but there was no increase in the toxic effect. There was also no increase in the amount of A fragment that was translocated to the cytosol, as estimated from protection against externally added Pronase E. In cells where specific binding was abolished by treatment with 12-O-tetradecanoyl-phorbol 13-acetate, trypsin, or 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, unspecific binding did not induce intoxication or protection against protease. This was also the case in untreated L cells, which showed no specific binding of the toxin. When Vero cells with diphtheria toxin bound to specific receptors were exposed to low pH, the cells were permeabilized to K+, whereas this was not the case when the toxin was bound nonspecifically at low pH or via avidin-biotin. The data indicate that the cell-surface receptor for diphtheria toxin facilitates both insertion of the B fragment into the cell membrane and translocation of the A fragment to the cytosol.  相似文献   

8.
Bordetella pertussis produces a calmodulin-activated adenylate cyclase (AC) that exists in several forms. Only one form of AC, of apparent 200 kDa, is a toxin that penetrates eukaryotic cells and generates uncontrolled levels of intracellular cAMP. Recombination studies in transposon Tn5-insertion mutants of B. pertussis and amino acid sequence homology with alpha-hemolysin of Escherichia coli suggested that AC toxin may also have a hemolytic activity. Here, we demonstrate that only the toxic form of B. pertussis AC possesses hemolytic activity. Immunoblotting of membranes from sheep erythrocytes throughout the process of cell lysis detects the presence and accumulation of only the 200-kDa form of B. pertussis AC. cAMP generation induced by AC toxin in sheep erythrocytes is immediate whereas appearance of hemolysis is delayed by about 1 h and requires a higher level of AC toxin activity. Addition of exogenous calmodulin to sheep erythrocyte incubation medium potentiates the hemolytic activity of AC toxin but blocks cAMP generation. Extracellular Ca2+ at mM concentrations is absolutely required for cAMP generation but not for hemolysis. However, binding of AC toxin to sheep erythrocytes in the absence of exogenous Ca2+ followed by reincubation of cells in a toxin-free buffer containing Ca2+ leads to an immediate rise in intracellular cAMP. Human erythrocytes bind AC toxin and generate cAMP but are resistant to lysis. These results show that binding of AC toxin to erythrocytes can cause both cAMP generation and hemolysis or only one of these depending on conditions applied and cell type used.  相似文献   

9.
It has been recently shown (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson, 1983, Cell, 33:273-285) that after a hypotonic shock followed by incubation in a K+-free medium, human fibroblasts arrest their coated pit formation and therefore arrest receptor-mediated endocytosis of low density lipoprotein. We have used this technique to study the endocytosis of transferrin, diphtheria toxin, and ricin toxin by three cell lines (Vero, Wi38/SV40, and Hep2 cells). Only Hep2 cells totally arrested internalization of [125I]transferrin, a ligand transported by coated pits and coated vesicles, after intracellular K+ depletion. Immunofluorescence studies using anti-clathrin antibodies showed that clathrin associated with the plasma membrane disappeared in Hep2 cells when the level of intracellular K+ was low. In the absence of functional coated pits, diphtheria toxin was unable to intoxicate Hep2 cells but the activity of ricin toxin was unaffected by this treatment. By measuring the rate of internalization of [125I]ricin toxin by Hep2 cells, with and without functional coated pits, we have shown that this labeled ligand was transported in both cases inside the cells. Hep2 cells with active coated pits internalized twice as much [125I]ricin toxin as Hep2 cells without coated pits. Entry of ricin toxin inside the cells was a slow process (8% of the bound toxin per 10 min at 37 degrees C) when compared to transferrin internalization (50% of the bound transferrin per 10 min at 37 degrees C). Using the indirect immunofluorescence technique on permeabilized cells, we have shown that Hep2 cells depleted in intracellular K+ accumulated ricin toxin in compartments that were predominantly localized around the cell nucleus. Our study indicates that in addition to the pathway of coated pits and coated vesicles used by diphtheria toxin and transferrin, another system of endocytosis for receptor-bound molecules takes place at the level of the cell membrane and is used by ricin toxin to enter the cytosol.  相似文献   

10.
Entry of prebound diphtheria toxin at low pH occurred rapidly in the presence of isotonic NaCl, NaBr, NaSCN, NaI, and NaNO3, but not in the presence of Na2SO4, 2-(N-morpholino)ethanesulfonic acid neutralized with Tris, or in buffer osmotically balanced with mannitol. SCN- was the most efficient anion to facilitate entry. Uptake studies with radioactively labeled anions showed that SCN- was transported into cells 3 times faster than Cl-, while the entry of SO2-4 occurred much more slowly. The anion transport inhibitors 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and piretanide inhibited entry at low pH even in the presence of permeant anions. When cells with bound toxin were exposed to low pH in the absence of permeant anions, then briefly exposed to neutral pH and subsequently exposed to pH 4.5 in the presence of isotonic NaCl, toxin entry was induced. The data indicate that efficient anion transport at the time of exposure to low pH is required for entry of surface-bound diphtheria toxin into the cytosol. Since insertion of diphtheria toxin into the membrane occurs even in the absence of permeant anions, the results indicate that low pH is required not only for insertion of fragment B into the membrane, but also for the subsequent entry of fragment A into the cytosol.  相似文献   

11.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

12.
A number of monoclonal antibodies against diphtheria toxin were isolated. Some of their properties were determined. Antibody 2 reacts with the region of between 30 and 45 kDa from the NH2 terminus of toxin. Antibody 7 reacts with the COOH-terminal 17-kDa region of toxin. These two antibodies show sharp contrasts in their effects on toxin action in cultured cells. When antibody 2 or 7 and toxin were mixed, incubated at 37 degrees C, and then added to sensitive Vero cells, antibody 7 blocked toxin action, but antibody 2 did not. When antibody 2 or 7 was added to cells to which toxin had been prebound at 4 degrees C, and the cells were then shifted to 37 degrees C, antibody 7 did not block toxin action, but antibody 2 inhibited intoxication. Antibody 7 blocked binding of 125I-toxin to cells and did not block degradation of toxin associated with cells. Antibody 2 did not block binding of 125I-toxin to cells, and was able to bind to cells in the presence of toxin. The results obtained from the effect of antibody 2 on degradation of 125I-toxin associated with cells resemble those seen with amines, which block toxin action but do not inhibit binding of toxin to cells. These facts show that antibody 2 does not block binding of toxin to cell surfaces, but blocks the entry of toxin into the cytosol at a step after binding of toxin to the receptor. Antibodies 14 and 15 react with fragment A of diphtheria toxin, but have no effect on any activity of toxin. The other monoclonal antibodies have effects on toxin binding and entry intermediate between those of 2 and 7.  相似文献   

13.
The actin-dependent ATPase activity of myosin is retained in the separated heads (S1) which contain the NH2-terminal 95-kDa heavy chain fragment and one or two light chains. The S1 heavy chain can be degraded further by limited trypsin treatment into characteristic 25-, 50-, and 20-kDa peptides, in this order from the NH2-terminal end. The 20-kDa peptide contains an actin-binding site and SH1 and SH2, two thiols whose modification dramatically affects ATPase activity. By treating myosin filaments with trypsin at 4 degrees C in the presence of 2 mM MgCl2, we have now obtained preferential cleavage at the 50-20-kDa heavy chain site without any cleavage at the head-rod junction and hinge region in the rod. Incubation of these trypsinized filaments at 37 degrees C in the presence of MgATP released a new S1 fraction which lacked the COOH-terminal 20-kDa heavy chain peptide region. This fraction, termed S1'(75K), has more than 50% of the actin-activated Mg2+-ATPase activity of S1 and the characteristic Ca2+-ATPase and K+-EDTA ATPase activities of myosin. These results show that SH1 and SH2 are not essential for ATPase activity and that binding of actin to the 20-kDa region is not essential for the enhancement of the Mg2+-ATPase activity.  相似文献   

14.
The characteristics of Ca2+ transport across the excitable membrane of Paramecium aurelia were studied by measuring 45Ca2+ influx and efflux. The intracellular concentration of free Ca2+ in resting P. aurelia was at least ten times less than the extracellular concentration. Ca2+ influx was easily measurable at 0 degrees C, but not at 23 degrees C. The influx of 45Ca2+ was stimulated by the same conditions which cause membrane depolarization and ciliary reversal. Addition of Na+ and K+ (which stimulate ciliary reversal) resulted in a 10-fold increase in the rate of Ca2+ influx. An externally applied, pulsed, electric field (1-2 mA/cm2 of electrode surface), caused the rate of Ca2+ influx to increase 3-5 times, with the extent of stimulation dependent on the current density and the pulse width. Ca2+ influx had the characteristics of a passive transport system and was associated with the chemically or electrically triggered Ca2+ "gating" mechanism, which has been studied electrophysiologically. In contrast, Ca2+ efflux appeared to be catalyzed by an active transport system. With cells previously loaded at 0 degrees C with 45Ca2+, Ca2+ efflux was rapid at 23 degrees C, but did not occur at 0 degrees C. This active Ca2+ efflux mechanism is probably responsible for maintaining the low internal Ca2+ levels in unstimulated cells.  相似文献   

15.
Ca(2+)-dependent fusion of transport vesicles at their target can be enhanced by intracellular Ca2+ and diacylglycerol. Diacylglycerol induces translocation of the vesicle priming factor Munc13 and association of the secretory vesicle protein DOC2B to the membrane. Here we demonstrate that a rise in intracellular Ca2+ is sufficient for a Munc13-independent recruitment of DOC2B to the target membrane. This novel mechanism occurred readily in the absence of Munc13 and was not influenced by DOC2B mutations that abolish Munc13 binding. Purified DOC2B (expressed as a bacterial fusion protein) bound phospholipids in a Ca(2+)-dependent way, suggesting that the translocation is the result of a C2 domain activation mechanism. Ca(2+)-induced translocation was also observed in cultured neurons expressing DOC2B-enhanced green fluorescent protein. In this case, however, various degrees of membrane association occurred under resting conditions, suggesting that physiological Ca2+ concentrations modulate DOC2B localization. Depolarization of the neurons induced a complete translocation of DOC2B-enhanced green fluorescent protein to the target membrane within 5 s. We hypothesize that this novel Ca(2+)-induced activity of DOC2B functions synergistically with diacylglycerol-induced Munc13 binding to enhance exocytosis during episodes of high secretory activity.  相似文献   

16.
Molecular cloning of pertussis toxin genes.   总被引:24,自引:0,他引:24       下载免费PDF全文
We have cloned a 4.5 kb EcoRI/BamHI DNA fragment from Bordetella pertussis which contains at least two genes responsible for expression of pertussis toxin. The S4 subunit of the toxin was isolated by high pressure liquid chromatography and the NH2-terminal amino acid sequence determined. Using a mixed synthetic oligonucleotide probe designed by reverse translation of a portion of the protein sequence, a cloned DNA fragment was identified which contains the coding information for at least the S4 structural subunit of the toxin. Sequence analyses indicate that the mature protein is derived by proteolytic cleavage of a precursor molecule. Southern blot analyses of Tn5-induced B. pertussis toxin-deficient mutants show that the Tn5 DNA is inserted 1.3 kb downstream from the S4 subunit gene. This second gene could code for another subunit required for assembly of the mature toxin or a non-structural transport protein, possibly in the same polycistronic operon. The molecular cloning of pertussis toxin genes provides the basis for development of a safer recombinant "new generation" vaccine for whooping cough.  相似文献   

17.
The internalization of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine following their insertion into the plasma membrane of cultured Chinese hamster fibroblasts was examined. When liposomes containing the fluorescent lipid 1,2-(palmitoyl-N-4-nitrobenzo-2-oxa-1,3-diazole-amino-caproyl) phosphatidylserine [palmitoyl-C6-NBD)-PS), were incubated with monolayer cell cultures at 2 degrees C, spontaneous transfer of the fluorescent lipid from the liposomes to the cells occurred, resulting in prominent labeling of the plasma membrane. However, if the cells were washed and warmed to 7 degrees C for 30 min, the (palmitoyl-C6-NBD)-PS also labeled numerous intracellular membranes. Evidence is presented suggesting that this internalization was not due to endocytosis, but was the result of transmembrane movement of the (palmitoyl-C6-NBD)-PS at the plasma membrane followed by translocation of lipid monomers from the plasma membrane to internal membranes. This transmembrane movement was reversibly inhibited by depletion of cellular ATP levels and was blocked by treatment with structural analogs of the lipid or by pretreatment of cells with glutaraldehyde or N-ethyl-maleimide. A fluorescent analog of phosphatidylethanolamine [palmitoyl-C6-NBD)-PE), which also exhibits transmembrane movement at the plasma membrane at 7 degrees C (Sleight, R. G., and Pagano, R. E. (1985) J. Biol. Chem. 260, 1146-1154), was further studied. Its transmembrane movement was also inhibited by depletion of cellular ATP levels, or by pretreatment of cells with N-ethylmaleimide. The transmembrane movement of the fluorescent phosphatidylserine and phosphatidylethanolamine analogs was inhibited when the unnatural D-isomers of these lipids were used, further suggesting that this process was stereospecific and therefore likely to have been protein-mediated.  相似文献   

18.
A K Ohlin  I Bj?rk  J Stenflo 《Biochemistry》1990,29(3):644-651
The function of the epidermal growth factor (EGF) like domains in the vitamin K dependent plasma proteins is largely unknown. In order to elucidate the function of these domains in protein C, we have devised a method to isolate the EGF-like region from the light chain connected to the NH2-terminal region, containing the gamma-carboxyglutamic acid (Gla) residues. This was accomplished by tryptic cleavage of protein C that had been reversibly modified with citraconic anhydride to prevent cleavage at the lysine residue (in position 43) that is located between the two regions. The isolated fragment consists of residues 1-143 from the light chain of protein C connected by a disulfide bond to residues 108-131 from the heavy chain. Upon Ca2+ binding to the isolated Gla-EGF fragment from bovine protein C, the tryptophan fluorescence emission was quenched in a manner indicating binding to at least two classes of binding sites. These were presumably the Gla-independent Ca2(+)-binding site located in the EGF-like region and the lower affinity sites in the Gla region. A comparison with the tryptophan fluorescence quenching that occurred upon Ca2+ binding to the separately isolated EGF-like and Gla regions suggested that the EGF-like region influenced the structure and Ca2+ binding of the Gla region. The isolated Gla-EGF fragment functioned as an inhibitor of the anticoagulant effect of activated protein C in a clotting assay, whereas no inhibition was observed with either the Gla region or the EGF-like region.  相似文献   

19.
E-type ATPases are involved in many biological processes such as modulation of neural cell activity, prevention of intravascular thrombosis, and protein glycosylation. In this study, we show that a gene of Saccharomyces cerevisiae, identified by similarity to that of animal ectoapyrase CD39, codes for a new member of the E-type ATPase family (Apy1p). Overexpression of Apy1p in yeast cells causes an increase in intracellular membrane-bound nucleoside di- and triphosphate hydrolase activity. The activity is highest with ADP as substrate and is stimulated similarly by Ca (2+), Mg(2+), and Mn(2+). The results also indicate that Apy1p is an integral membrane protein located predominantly in the Golgi compartment. Sequence analysis reveals that Apy1p contains one large NH(2)-terminal hydrophilic apyrase domain, one COOH-terminal hydrophilic domain, and two hydrophobic stretches in the central region of the polypeptide. Although no signal sequence is found at the NH(2)-terminal portion of the protein and no NH(2)-terminal cleavage of the protein is observed, demonstrated by the detection of NH(2)-terminal tagged Apy1p, the NH(2)-terminal domain of Apylp is on the luminal side of the Golgi apparatus, and the COOH-terminal hydrophilic domain binds to the cytoplasmic face of the Golgi membrane. The second hydrophobic stretch of Apy1p is the transmembrane domain. These results indicate that Apylp is a type III transmembrane protein; however, the size of the Apy1p extracytoplasmic NH(2) terminus is much larger than those of other type III transmembrane proteins, suggesting that a novel translocation mechanism is utilized.  相似文献   

20.
1. A 50-kDa fragment representing the NH2-terminus of the heavy subunit of botulinum type A neurotoxin was found, at low pH, to evoke the release of K+ from lipid vesicles loaded with potassium phosphate. Similar K+ release was also observed with the intact neurotoxin, its heavy chain and a fragment consisting of the light subunit linked the 50-kDa NH2-terminal heavy chain fragment. The light subunit alone, however, was inactive. 2. In addition to K+, the channels formed in lipid bilayers by botulinum neurotoxin type A or the NH2-terminal heavy chain fragment were found to be large enough to permit the release of NAD (Mr 665). 3. The optimum pH for the release of K+ was found to be 4.5. Above this value K+ release rapidly decreased and was undetectable above pH 6.0. 4. The binding of radiolabelled botulinum toxin to a variety of phospholipids was assessed. High levels of toxin binding were only observed to lipid vesicles with an overall negative charge; much weaker binding occurred to lipid vesicles composed of electrically neutral phospholipids. 5. A positive correlation between the efficiency of toxin-binding and the efficiency of K+ release from lipid vesicles was not observed. Whereas lipid vesicles containing the lipids cardiolipin or dicetyl phosphate bound the highest levels of neurotoxin, the toxin-evoked release of K+ was low compared to vesicles containing either phosphatidyl glycerol, phosphatidyl serine or phosphatidyl inositol. 6. The implications of these observations to the mechanism by which the toxin molecule is translocated into the nerve ending are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号