首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic differentiation among the populations of the European abalone Haliotis tuberculata was investigated using different markers to better understand the evolutionary history and exchanges between populations. Three markers were used: mitochondrial cytochrome oxidase I (COI), the sperm lysin nuclear gene, and eight nuclear microsatellites. These markers present different characteristics concerning mutation rate and inheritance, which provided complementary information about abalone history and gene diversity. Genetic diversity and relationships among subspecies were calculated from a sample of approximately 500 individuals, collected from 17 different locations in the north-eastern Atlantic Ocean, Macaronesia, and Mediterranean Sea. COI marker was used to explore the phylogeny of the species with a network analysis and two phylogenetic methods. The analysis revealed 18 major haplotypes grouped into two distinct clades with a pairwise sequence divergence up to 3.5 %. These clades do not correspond to subspecies but revealed many contacts along Atlantic coast during the Pleistocene interglaciations. The sperm lysin gene analysis separated two different subtaxa: one associated to Macaronesian islands, and the other to all other populations. Moreover, a small population of the northern subtaxon was isolated in the Adriatic Sea—probably before the separation of the two lineages—and evolved independently. Microsatellites were analyzed by different genetics methods, including the Bayesian clustering method and migration patterns analysis. It revealed genetically distinct microsatellite patterns among populations from Mediterranean Sea, Brittany and Normandy, Morocco, and Canary and Balearic islands. Gene flow is asymmetric among the regions; the Azores and the Canary Islands are particularly isolated and have low effective population sizes. Our results support the hypothesis that climate changes since the Pleistocene glaciations have played a major role in the geographic distribution of the European abalone. Traces of these events related to maternal inheritance were shown on COI marker.  相似文献   

2.
Over the past three decades, the black abalone, Haliotis cracherodii, has experienced precipitous declines in abundance over portions of its range in southern and central California. The potential for recovery of these populations is dependent in part on dispersal processes; that is, can distant populations serve as sources of recruits to locales that no longer harbor H. cracherodii? Here we use population genetic analysis to assess levels of population subdivision and infer recruitment processes. Epipodial tissue samples were obtained from over 400 black abalone from seven geographic sites between Santa Cruz and Santa Barbara counties in central California. Allelic frequencies were determined for each population at three polymorphic enzyme-encoding loci (GPI, AAT-1 and PGM). Significant allelic frequency differentiation among sites was observed at all three loci. Genetic distance was found to be independent of geographic distance over the approximately 300-km sampling range. In addition, a limited number of DNA sequences (total N=51) were obtained for the mitochondrial cytochrome oxidase subunit I gene (COI) from five of the populations. Since the same common COI haplotype dominated each population, this analysis had little statistical power and failed to detect population structure. The observed level of population differentiation at allozyme loci was three-fold higher than that observed in California red abalone, H. rufescens. The species differ in their breeding period and it is suggested that the relatively short, summer breeding season of black abalone limits dispersal because larvae experience reduced variance in oceanographic conditions relative to red abalone that spawn year-round. Based on these results, rates of recolonization and recovery of locally depressed or extirpated black abalone populations are likely to be slow despite harvest restrictions.  相似文献   

3.
Macrobrachium olfersii is an amphidromous freshwater prawn, widespread along the eastern coasts of the Americas. This species shows great morphological modifications during ontogenesis, and several studies have verified the existence of a wide intraspecific variation. Because of this condition, the species is often misidentified, and several synonyms have been documented. To elucidate these aspects, individuals of M. olfersii from different populations along its range of distribution were investigated. The taxonomic limit was established, and the degree of genetic variability of this species was described. We extracted DNA from 53 specimens of M. olfersii, M. americanum, M. digueti and M. faustinum, which resulted in 84 new sequences (22 of 16S mtDNA, 45 of Cythocrome Oxidase I (COI) mtDNA, and 17 of Histone (H3) nDNA). Sequences of three genes (single and concatenated) from these species were used in the Maximum Likelihood and Bayesian Inference phylogenetic analyses and COI sequences from M. olfersii were used in population analysis. The genetic variation was evaluated through the alignment of 554 bp from the 16S, 638 bp from the COI, and 338 bp from the H3. The rates of genetic divergence among populations were lower at the intraspecific level. This was confirmed by the haplotype net, which showed a continuous gene flow among populations. Although a wide distribution and high morphological intraspecific variation often suggest the existence of more than one species, genetic similarity of Caribbean and Brazilian populations of M. olfersii supported them as a single species.  相似文献   

4.
5.
The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using θST values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest θST (0.13–0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (θST = 0.04–0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Niño Southern Oscillation (ENSO) events along the Pacific coast.  相似文献   

6.
Intertidal populations of black abalone Haliotis cracherodii Leach at Santa Cruz Island, California, vary in density among surge channels from < 1 to 126 abalone/m2. Dense populations are characterized by high levels of intraspecific secondary substratum use (“stacking”) for attachment surfaces, though it is rare in low density areas. Use of shell surfaces by black abalone appears not to be an evolved adaptive strategy. Individuals in stacks fed significantly more than expected, yet solitary abalone next to stacks shared food trapped by stacks. In the laboratory, starvation did not increase the propensity of an abalone to stack. Stacks were equally common in the breeding and non-breeding seasons, suggesting that stacking behavior was not a mechanism to enhance reproductive success. Stacking did not enhance avoidance of predators or competitors. Laboratory experiments showed that stacking is density dependent and probably the result of limitation of primary attachment space. Removals of significant predators (sea otters and Chumash Indians) of adult abalone during the past two centuries probably led to increased densities of black abalone, which in turn has had an indirect effect on the prevalence of stacking.  相似文献   

7.
Scylla serrata (Decapoda: Portunidae) is a swimming crab that is widespread in the Indo-Pacific region and commonly found in estuarine and mangrove waters. An extended planktonic larval phase suggests high dispersal potential and the possibility of extensive gene flow between conspecific populations at least on a geographic mesoscale (tens to hundreds of kilometres).Intraspecific variation of the mitochondrial DNA cytochrome oxidase subunit I (mtDNA COI) gene was investigated in 77 individuals from four representative mangrove swamps of the African tropics (Kenya and Zanzibar) by means of DNA sequencing. We examined 535 base pairs (bp) and identified 24 different haplotypes. Each population sample is characterised by a single most frequent haplotype, shared among all four populations, and a small number of rare ones, typically present in only one or two individuals and representative of a specific population.Analysis of molecular variance (AMOVA), FST statistics and χ2 contingency analysis of spatial distribution of mtDNA haplotype frequencies revealed in toto a significant genetic differentiation among populations. These results could indicate that gene flow might be reduced, even between geographically close sites, despite the high potential for dispersal; anyway, at the recorded level of divergence and owing to the abundance of rare haplotypes and singletons in our data set, repeated sampling over time is necessary to establish whether the recorded pattern of genetic differentiation is stable and biologically significant.Finally, integration of our data with those reported by Gopurenko et al. [Mar. Biol. 134 (1999) 227] on S. serrata from South Africa, Red Sea and Mauritius Islands allowed to infer S. serrata population structure within a larger area of the Indian Ocean region.  相似文献   

8.
The genetic structure of marine populations is greatly influenced by the dispersal ability of the organisms, and it is intuitive that a limited dispersal capability would result in greater genetic differentiation. Octopus variabilis is a typical cephalopod species that shows limited dispersal potential, and previous genetic surveys by a mitochondrial DNA analyses revealed high levels of genetic differentiation among its populations, suggesting the existence of cryptic or subspecies. To test this hypothesis, amplified fragment length polymorphisms (AFLPs) and the cytochrome oxidase II (COII) gene sequence were used to re-evaluate the spatial genetic structure of five populations of O. variabilis along the coast of China. Four distinct groups were identified within these five populations: the Dalian + Qingdao, Zhoushan, Wenzhou, and Dongshan groups. A deep genetic break among the Dongshan, Wenzhou, and other two groups were specifically recognized by both genetic markers. A considerable number of distinct alleles for AFLP and a deep divergence of 13.9–19.4% in the COII gene sequences were found among them, suggesting the occurrence of potential cryptic or subspecies of O. variabilis. A genetic structure of isolation by distance was identified in O. variabilis by a Mantel test, with the geographic distance explaining 62% of the variation in genetic differentiation. This result suggests that gene flow is geographically restricted for this species and that limited dispersal may be the main reason for the genetic differentiation among O. variabilis populations. The present results indicate that special care should be taken in future fishery exploitation and conservation efforts for this species and that conservation management should include populations representing all lineages.  相似文献   

9.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   

10.
The Asian green mussel Perna viridis is ecologically and economically important in the coastal regions of China. In order to characterize the genetic diversity and population connectivity of P. viridis in South China Sea, a 664 bp region of mitochondrial COI gene and a 293 bp region of 16S rRNA gene were sequenced and analyzed for 78 and 92 individuals from four populations in South China Sea, respectively. A total of 15 haplotypes were defined by 14 variable nucleotide sites in COI gene, and 7 haplotypes by 6 variable nucleotide sites in 16S rRNA gene. High haplotype diversity and low nucleotide diversity were observed in COI gene, while moderate haplotype diversity and low nucleotide diversity were observed in 16S rRNA gene. Pairwise FST values of COI gene were all negative and those of 16S rRNA gene ranged from −0.01409 to 0.10289. The results showed that no significant genetic divergence (or shallow genetic structure) and high levels of population connectivity among the four populations of P. viridis in South China Sea.  相似文献   

11.
Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L.), a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi) variants. Grass carp (Ctenopharyngodon idella) was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp) to 32% (koi) and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication.  相似文献   

12.
Octopus vulgaris is a cephalopod species in several oceans and commonly caught by artisanal and industrial fisheries. In Brazil, O. vulgaris populations are mainly distributed along the southern coast and have been subjected to intensive fishing during recent years. Despite the importance of this marine resource, no genetic study has been carried out to examine genetic differences among populations along the coast of Brazil. In this study, 343 individuals collected by commercial vessels were genotyped at six microsatellite loci to investigate the genetic differences in O. vulgaris populations along the southern coast of Brazil. Genetic structure and levels of differentiation among sampling sites were estimated via a genotype assignment test and F-statistics. Our results indicate that the O. vulgaris stock consists of four genetic populations with an overall significant analogous FSTCT = 0.10710, P < 0.05) value. The genetic diversity was high with an observed heterozygosity of Ho = 0.987. The negative values of FIS found for most of the loci examined suggested a possible bottleneck process. These findings are important for further steps toward more sustainable octopus fisheries, so that this marine resource can be preserved for long-term utilization.  相似文献   

13.
Gardenia jasminoides Ellis is used in traditional Chinese medicine (TCM) in China. Levels of genetic variation and patterns of population structure within and among eight wild or cultivated populations of G. jasminoides Ellis in China were investigated using amplified fragment length polymorphism (AFLP) markers. Of the 11 primers screened, four produced highly reproducible AFLP bands. Using these primers, 244 discernible DNA fragments were generated with 165 bands (67.6%), were polymorphic, indicating considerable genetic variation at the species level. In contrast, there were relatively low levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 36.89% to 59.43%. Genetic diversity within populations ranged from 0.2086 to 0.3108, averaging 0.2392 at the species level. A high level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (76.59%), Shannon's index analysis (64.8%) and AMOVA analysis (72.75%). No significant statistical differences (analysis of molecular variance [AMOVA], p = 0.0639) in AFLP variation were found between regions. However, the variance among populations and within populations differed significantly (p < 0.001). An indirect estimate of historical levels of gene flow (Nm = 1.7448) was consistent with the high mean genetic identity (mean I = 0.9263) found among populations. There is an association between geographic and genetic distances between populations. Presently gene change exists between populations.  相似文献   

14.
The South African abalone (Haliotis midae) is a gastropod mollusc of economic importance. In recent years natural populations have come under considerable pressure due to overharvesting and ecological shifts. The spatial genetic structure of H. midae has been determined; however there has not been a temporal assessment of abalone population dynamics around the South African coast. Using a population genomics approach this study aimed to assess fluctuations in genetic diversity among wild and cultured South African abalone populations through time and space. Various estimates of genetic diversity and population differentiation were calculated using EST-derived SNP markers. All populations had comparable levels of genetic diversity and the long-term effective population size appears to be sufficiently large for the wild populations, despite evidence of recent bottlenecks. Population differentiation was for the most part geographically correlated, with spatial genetic structure maintained across temporal samples. Significant genetic differentiation was, however, detected among temporal samples taken from the same locality. There was evidence for comparatively small short-term effective population sizes that could explain large changes in allele frequencies due to stochastic effects. Temporal heterogeneity could also be explained by changes in selection pressures over time. H. midae populations could, therefore, be more dynamic than previously estimated and this could have implications for effective conservation and fisheries management.  相似文献   

15.
Morphological character variation was examined in Atherinops affinis , a temperate marine silverside with a broad geographic range and presumed limited powers of dispersal. Populations of this species were sampled from three California mainland sites, one Channel Island site and one site in the upper Gulf of California. A geometric morphometric analysis yielded higher resolution in the assessment of phenotypic divergence among the four Pacific coast populations than either body measurement or meristic analysis, and it showed that most of the shape variation among these populations occurs in the head region and body depth of the fish. All three analyses supported the hypothesis that populations of A. affinis from central and southern California coastal waters and from Santa Catalina Island are morphologically distinct from each other; the Santa Catalina Island population was found to be the most divergent. On the basis of meristic characters alone, the population of A. affinis from the upper Gulf of California was different from A. affinis populations along the Pacific coast of California. The analyses revealed variation in several morphological characters, e.g . body depth and meristics, known to vary in association with environmental conditions. Given that A. affinis appears to have low among‐population genetic variation, this species may be phenotypically plastic in response to the environmental conditions of the habitat of each population.  相似文献   

16.
Populations of the marine benthic red macroalgae Hypnea musciformis and Hypnea pseudomusciformis along the Atlantic and Pacific Oceans were tested for phylogeographic structure using the DNA barcode COI‐5P combined with rbcL for the construction of the phylogenetic tree. Strong patterns of genetic structure were detected across 210 COI‐5P DNA sequences, and 37 COI‐5P haplotypes were found, using multiple statistical approaches. Hypnea musciformis was found in the Northeast and Northwest Atlantic, the Mediterrean Sea, Namibia, and along the Pacific coast of Mexico. Two new putative species were detected, Hypnea sp. 1 in the Caribbean Sea and Hypnea sp. 2 in the Dominican Republic. Three distinct marine phylogeographic provinces were recognized in the Southern Hemisphere for H. pseudomusciformis: Uruguay, South‐Southeast Brazil, and Northeast Brazil. The degree of genetic isolation and distinctness among these provinces varied considerably. The Uruguay province was the most genetically distinct, as characterized by four unique haplotypes not shared with any of the Brazilian populations. Statistically significant results support both, isolation by distance and isolation by environment hypotheses, explaining the formation and mantainance of phylogeographic structuring along the Uruguay‐Brazil coast. Geographic, taxonomic and molecular marker concordances were found between our H. pseudomusciformis results and published studies. Furthermore, our data indicate that the Hawaiian introduced populations of H. musciformis contain Hypnea sp. 1 haplotypes, the current known distribution of which is restricted to the Caribbean.  相似文献   

17.
The marine species usually show high dispersal capabilities accompanied by high levels of gene flow. On the other hand, many physical barriers distribute along the continental marginal seas and may prevent dispersals and increase population divergence. These complexities along the continental margin generate serious challenges to population genetic studies of marine species. Chinese sea bass Lateolabrax maculatus distributes broad latitudinal gradient spanning from the tropical to the mid-temperate zones in the continental margin seas of the Northwest Pacific Ocean. Using the double digest restriction-site-associated DNA tag sequencing (ddRAD) approach, we genotyped 10,297 SNPs for 219 Chinese seabass individuals of 12 populations along the Chinese coast in the Northwest Pacific region. Genetic divergence among these populations was evaluated, and population structure was established. The results suggested that geographically distant populations in the Bohai Gulf and the Beibu Gulf retain significant genetic divergence, which are connected by a series of intermediate populations in between. The results also suggested that Leizhou Peninsula, Hainan Island, and Shandong Peninsula are major physical barriers and substantially block gene flow and genetic admixture of L. maculatus. We also investigated the potential genetic basis of local adaptation correlating with population differentiation of L. maculatus. The sea surface temperature is a significantly differentiated environmental factor for the distribution of L. maculatus. The correlation of water temperature and genetic variations in extensively distributed populations was investigated with Bayesian-based approaches. The candidate genes underlying the local selection in geographically divergent populations were identified and annotated, providing clues to understand the potential mechanisms of adaptive evolution. Overall, our genome scale population genetic analysis provided insight into population divergence and local adaptation of Chinese sea bass in the continental marginal seas along Chinese coast.  相似文献   

18.
Over the past two decades, the South African abalone (Haliotis midae), has been under serious threat mainly due to overexploitation. To assure successful management and conservation of wild stocks, the consideration of species-specific evolutionary and population dynamic aspects is critical. In this study, eight microsatellites and 12 single nucleotide polymorphic loci (SNPs) were applied to determine genetic structure in nine populations sampled throughout the species?? natural distribution range. It spans along three biogeographical regions of the South African coastline: temperate in the West coast, warm temperate in the South coast and subtropical in the East coast. Data analysis applying frequentist and Bayesian-based clustering methods indicated weak genetic differentiation between populations of the West, South and East coast. Spatial Bayesian inference further revealed clinal variation along a longitudinal gradient and a transitional zone in the South coast. Coalescent analysis of long-term migration showed restricted interchange among the sampling locations of the South coast while estimates of effective population size were comparable between coastal regions. Furthermore demographic analysis of microsatellite data suggested population expansion, probably reflecting range expansion that occurred following glacial retreat during the Pleistocene. Overall, population structure analysis suggested contemporary (hydrographical conditions) as well as historical (Pleistocene contraction of habitat) restrictions to gene flow. This study provides the foundation for the establishment of an integrated management policy for preserving the natural diversity and adaptive potential of H. midae.  相似文献   

19.
The clam Macridiscus multifarius with a planktonic larval stage of about 10 days is an ecologically and economically important species in the coastal regions of China. In this study, 3 mt-DNA markers (COI, 12S rRNA, and ND1) were used to investigate the population structure and demography of wild M. multifarius populations in 3 coastal localities of the East China Sea (ZS and ZP populations) and Beibu Gulf in the South China Sea (BH population). Sequences of 685 bp in COI, 350 bp in 12S rRNA, and 496 bp in ND1 were determined. High level and significant F ST values were obtained among the different localities on the basis of either COI (F ST = 0.100–0.444, p < 0.05) or 12S rRNA (F ST = 0.199–0.742, p < 0.05) gene, indicating a high degree of genetic differentiation among the populations. F ST values were significant but weak for the ND1 gene because it is highly conservative. The median-joining network suggested an obvious genetic differentiation between ZS and BH populations, and the finding is consistent with the results of our demographic analyses using the unweighted pair group method with arithmetic mean. Our study unraveled the extant population genetic structure of M. multifarius and explained the strong population structure of a species with a short planktonic larval stage species; this information could be useful for fishery management measures, including artificial breeding and conservation.  相似文献   

20.
AFLP and ISSR markers were used to determine the genetic variations in eight mangrove and non-mangrove populations of Heritiera littoralis (Sterculiaceae), a threatened species in China. Our results showed a moderate to high level of genetic variation in this species (P = 63.69%, HT = 0.20 for AFLP; P = 76.07%, HT = 0.22 for ISSR), and a relatively high level of genetic differentiation among populations (GST = 0.24 for AFLP and 0.27 for ISSR). Life history traits, long-distance dispersal of floating seeds, and local environments may play important roles in shaping the genetic diversity and genetic structure of this species. Investigation of the plant’s reproductive capacity showed that the natural seed production of H. littoralis was low, as was the germination rate and the transformation rate from juvenile to adult. H. littoralis is seriously threatened and is in urgent need of conservation in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号