首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonium assimilation was followed in N-starved mycelia from the ectomycorrhizal Ascomycete Cenococcum graniforme. The evaluation of free amino acid pool levels after the addition of 5 millimolar NH4+ indicated that the absorbed ammonium was assimilated rapidly. Post-feeding nitrogen content of amino acids was very different from the initial values. After 8 hours of NH4+ feeding, glutamine accounted for the largest percentage of free amino acid nitrogen (43%). The addition of 5 millimolar methionine sulfoximine (MSX) to NH4+-fed mycelia caused an inhibition of glutamine accumulation with a corresponding increase in glutamate and alanine levels.

Using 15N as a tracer, it was found that the greatest initial labeling was into glutamine and glutamate followed by aspartate, alanine, and ornithine. On inhibiting glutamine synthetase using MSX, 15N enrichment of glutamate, alanine, aspartate, and ornithine continued although labeling of glutamine was quite low. Moreover, the incorporation of 15N label in insoluble nitrogenous compounds was lower in the presence of MSX. From the composition of free amino acid pools, the 15N labeling pattern and effects of MSX, NH4+ assimilation in C. graniforme mycelia appears to proceed via glutamate dehydrogenase pathway. This study also demonstrates that glutamine synthesis is an important reaction of ammonia utilization.

  相似文献   

2.
On following N2-incorporation and subsequent metabolism in the lichen Peltigera canina using 15N as tracer, it was found, over a 30 min period, that greatest initial labelling was into NH 4 + followed by glutamate and the amide-N of glutamine. Labelling of the amino-N of glutamine, aspartate and alanine increased slowly. Pulse-chase experiments using 15N confirmed this pattern. On inhibiting the GS-GOGAT pathway using l-methionine-dl-sulphoximine and azaserine, 15N enrichment of glutamate, alanine and aspartate continued although labelling of glutamine was undetectable. From this and enzymic data, NH 4 + assimilation in the P. canina thallus appears to proceed via GS-GOGAT in the cyanobacterium and via GDH in the fungus; aminotransferases were present in both partners. The cyanobacterium assimilated 44% of the 15N2 fixed; the remainder was liberated almost exclusively as NH 4 + and then assimilated by fungal GDH.Abbreviations ADH alanine dehydrogenase - APT aspartate-pyruvate aminotransferase - AOA aminooxyacetate - GDH glutamate dehydrogenase - GOT glutamate-oxaloacetate aminotransferase - GOGAT glutamate synthase - GPT glutamate-pyruvate aminotransferase - GS glutamine synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine  相似文献   

3.
《Experimental mycology》1995,19(4):297-304
Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [15N]alanine. Short-term exposure of mycelial discs to [15N]alanine showed that the greatest flow of 15N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [15N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon.  相似文献   

4.
Abstract—
  • 1 The metabolism of three substrates, [U-14C]glucose, [U-14C]pyruvate and [U-14C]glutamate has been studied in vitro in neuronal and glial cell fractions obtained from rat cerebral cortex by a density gradient technique.
  • 2 The mixed cell suspension, after washing, metabolized glucose and glutamate in a manner essentially similar to the tissue slice. Exceptions were a reduced ability to generate lactate from glucose and alanine from glutamate, and a lowered effect of added glucose in suppressing the production of aspartate from glutamate.
  • 3 After 2 hr incubation with [U-14C]glucose, the concentration of the amino acids glutamate, glutamine, GABA, aspartate and alanine were raised in the neuronal, compared to the glial fraction to 234 per cent, 176 per cent, 202 per cent, 167 per cent and 230 per cent respectively although both were lower than in the tissue slice. Incorporation of radio-activity was absolutely lower in the neuronal fraction, however, and the specific activities of the amino acids were: glutamate 12 per cent, GABA 18 per cent, aspartate 34 per cent, and alanine 33 per cent of those in the glial fraction.
  • 4 After the incubation with [U-14C]pyruvate, the pool size of the amino acids were higher than after incubation with glucose, except for GABA, which was reduced to one-third. The concentrations of the amino acids glutamate, glutamine, GABA, aspartate, and alanine in the neuronal fraction were respectively 46 per cent, 143 per cent, 105 per cent, 97 per cent, and 57 per cent of those in the glial. Thus, with the exception of alanine, the specific activity of the neuronal amino acids compared to the glial was little increased when pyruvate replaced glucose as substrate.
  • 5 After 2 hr incubation with [U-14C]glutamate in the presence of non-radioactive glucose, the pool sizes of all the amino acids were increased in both neuronal and glial fractions, with the exception of neuronal alanine and glial glutamine. The concentrations of the amino acids glutamine, GABA, aspartate and alanine were raised in the neuronal fraction, compared to the glial, to 425 per cent, 187 per cent, 222 per cent, and 133 per cent respectively. The specific activities of all the amino acids were higher than with glucose alone with the exception of alanine, and neuronal GABA. Neuronal glutamine and aspartate had specific activities respectively 102 per cent and 84 per cent of glial.
  • 6 An unidentified amino acid, with RF comparable to that of alanine and specific activity close to that of glutamate, was also present after incubation. It was relatively concentrated in the neuronal fraction.
  • 7 The distribution of the enzymes glutamate dehydrogenase, aspartate aminotransferase, glutamate decarboxylase and glutamine synthetase between the cell fractions was studied. With the exception of glutamine synthetase, none of the enzymes was lost from the cell fractions during their preparation. Only 14 per cent of the glutamine synthetase, compared with 75 per cent of total protein, was recovered in the fractions. Of the enzymes, glutamate dehydrogenase activity was 406 per cent, and glutamate synthetase activity 177 per cent in the neuronal fraction compared to the glial in the absence of detergent. In the presence of detergent, glutamate dehydrogenase control was 261 per cent, aspartate aminotransferase activity 237 per cent is the neuronal as compared to the glial fraction.
  • 8 Incorporation of radioactivity into acid-insoluble material from either glutamate or pyruvate was twice as high into the neuronal as the glial fraction.
  • 9 The extent to which these differences may be extrapolated back to the intact tissue is considered, and certain correction factors calculated. The significance of the observations for an understanding of the compartmentation of amino acid pools and metabolism in the brain, and the possible identification of such compartments, is discussed.
  相似文献   

5.
Glutamine-free culture of Vero cells has previously been shown to cause higher cell yield and lower ammonia accumulation than that in glutamine-containing culture. Nitrogen metabolism of asparagine and glutamate as glutamine replacer was studied here using nuclear magnetic resonance (NMR) spectroscopy. 15N-labelled glutamate or asparagine was added and their incorporation into nitrogenous metabolites was monitored by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. In cells incubated with l-[15N]glutamate, the 15N label was subsequently found in a number of metabolites including alanine, aspartate, proline, and an unidentified compound. No detectable signal occurred, indicating that glutamate was utilized by transamination rather than by oxidative deamination. In cells incubated with l-[2-15N]asparagine, the 15N label was subsequently found in aspartate, the amine group of glutamate/glutamine, and in two unidentified compounds. Incubation of cells with l-[4-15N]asparagine showed that the amide nitrogen of asparagine was predominantly transferred to glutamine amide. There was no detectable production of , showing that most of the asparagine amide was transaminated by asparagine synthetase rather than deaminated by asparaginase. Comparing with a glutamine-containing culture, the activities of phosphate-activated glutaminase (PAG), glutamate dehydrogenase (GDH) and alanine aminotransferase (ALT) decreased significantly and the activity of aspartate aminotransferase (AST) decreased slightly.  相似文献   

6.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

7.
To clarify the unique characteristics of amino acid metabolism derived from glucose in the central nervous system (CNS), we injected [1-13C]glucose intraperitoneally to the rat, and extracted the free amino acids from several kinds of tissues and measured the amount of incorporation of13C derived from [1-13C]glucose into each amino acid using13C-magnetic resonance spectroscopy (NMR). In the adult rat brain, the intensities of resonances from13C-amino acids were observed in the following order: glutamate, glutamine, aspartate, -aminobutyrate (GABA) and alanine. There seemed no regional difference on this labeling pattern in the brain. However, only in the striatum and thalamus, the intensities of resonances from [2-13C]GABA were larger than that from [2,3-13C]aspartate. In the other tissues, such as heart, kidney, liver, spleen, muscle, lung and small intestine, the resonances from GABA were not detected and every intensity of resonances from13C-amino acids, except13C-alanine, was much smaller than those in the brain and spinal cord. In the serum,13C-amino acid was not detected at all. When the rats were decapitated, in the brain, the resonances from [1-13C]glucose greatly reduced and the intensities of resonances from [3-13C]lactate, [3-13C]alanine, [2, 3, 4-13C]GABA and [2-13C]glutamine became larger as compared with those in the case that the rats were sacrificed with microwave. In other tissues, the resonances from [1-13C]glucose were clearly detected even after the decapitation. In the glioma induced by nitrosoethylurea in the spinal cord, the large resonances from glutamine and alanine were observed; however, the intensities of resonances from glutamate were considerably reduced and the resonances from GABA and aspartate were not detected. These results show that the pattern of13C label incorporation into amino acids is unique in the central nervous tissues and also suggest that the metabolic compartmentalization could exist in the CNS through the metabolic trafficking between neurons and astroglia.Abbreviations NMR nuclear magnetic resonance - GABA -aminobutyrate - GFAP glial fibrillary acidic protein Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

8.
—(1) Synaptosomes incubated in high sodium, low potassium media showed high linear respiration in the presence of glucose which was converted into lactate, aspartate, glutamate, glutamine, alanine and GABA during 1 hr incubation periods. (2) Total conversion of glucose into most of these substrates over the incubation period was similar in synaptosomes and cortex slices. Half the lactate and only a small fraction of the glutamine made by slices was formed by synaptosomes. (3) Pool sizes of amino acids in cortex slices after incubation with glucose were, in general, higher than in synaptosomes, glutamate and glutamine being four-fold higher in slices. (4) Most of the amino acids made from glucose by synaptosomes were contained within their structure and not lost to the medium. (5) Glutamate was actively metabolized by synaptosomes to aspartate, glutamine, alanine and GABA. The specific radioactivities of the amino acids (except glutamine) after 1 hr incubation, approached that of the glutamate. (6) Pyridoxal phosphate added to the incubation medium increased GABA production from glutamate but not from glucose.  相似文献   

9.
Abstract— Hemisections of toad brains, when incubated in a physiological medium containing no glutamine. released considerable amounts of this amino acid into the medium. When glutamine was included in the medium at a concentration of 0.2 mm the net efflux from the tissue was reduced but not totally prevented. Although there was no net uptake of glutamine, the tissue did accumulate [U-14C]glu-tamine and some of this labelled glutamine was rapidly metabolized to glutamate, GABA and aspartate. The precursor-product relationship for the metabolism of glutamine to glutamate differed from the classic single compartment model in that the specific radioactivity of glutamate rose very quickly to approx one-tenth that of glutamine, but increased slowly thereafter. These data suggest that the [14C]glutamine was taken up into two metabolically distinct compartments and/or that some of the [14C]glutamine was converted to [14C]glutamate during the uptake process. The uptake of [14C]glutamine was diminished when the tissue was incubated in a non-oxygenated medium or when Na+ was omitted (substituted with sucrose) and K+ was concomitantly elevated. However, on a relative basis, the incorporation of radioactivity into glutamate and GABA was increased by these incubation conditions. The metabolism of glutamine to aspartate was greatly depressed when the tissue was not oxygenated. The glutamate formed from [U-14C]glutamine taken up by the tissue was converted to GABA at a faster rate than was glutamate derived from [U-14C]glucose. [U-14C]gly-cerol or exogenous [U-14C]glutamate. This suggests that glutamine was metabolized to GABA selectively; i.e. on a relative basis, glutamine served as a better source of carbon for the synthesis of GABA than did glucose, glycerol or exogenous glutamate. When the brain hemisections were incubated in the normal physiological medium with or without glutamine. there was very little efflux of glutamate, GABA or aspartate from the tissue. However when NaCl was omitted from the medium (substituted with sucrose) and K+ was elevated to 29 miu. a marked efflux of these three amino acids into the medium did occur, and over a period of 160min, the content of each amino acid in the tissue was depleted considerably. When glutamine (0.2 mm ) was included in the Na+ deficient-high K.+ medium, the average amount of glutamate, GABA and aspartate in the tissue plus the medium was greater than when glutamine was not included in the medium. Such data indicate that CNS tissues can utilize glutamine for a net synthesis of glutamate, GABA and aspartate. The results of this study provide further evidence in support of the concept that the functional (transmitter) pools of glutamate and GABA are maintained and regulated in part via biosynthesis from glutamine. One specific mechanism instrumental in regulating the content of glutamate in nerve terminals may be a process of glutamine uptake coupled to deamidation.  相似文献   

10.
—During anoxia induced by the administration of potassium cyanide, [U-14C]glucose was injected intraperitoneally into adult mice and they were decapitated at 5, 15 and 30 min after the injection. After freeze-drying in vacuo, differences in the uptake of radioactive carbon from [U-14C]glucose into free amino acids (glutamate + glutamine, aspartate + asparagine, GABA, alanine and glycine) in mouse cerebral neocortex, cerebellar hemisphere, caudate nucleus, thalamus, hypothalamus and medulla oblongata were investigated (by macroautoradiography and GLC separation) and compared with those obtained under normal conditions. (1) During anoxia, autoradiographical densities in the thalamus and medulla oblongata were higher than that in the cerebral neocortex and caudate nucleus. (2) Among specific radioactivities (d.p.m./μmol) of free amino acids, alanine gave the highest value during anoxia, except in the cerebellar hemisphere and hypothalamus at 5 min and the medulla oblongata at 30 min. (3) During anoxia, the specific radioactivities of alanine and glycine in each brain region did not significantly decrease at 15 and 30 min compared with those under normal conditions. During anoxia, the specific radioactivity of glutamate + glutamine in the cerebellar hemisphere and hypothalamus did not significantly decrease compared with the normal conditions, while that of GABA, aspartate + asparagine and glutamate + glutamine in the cerebral neocortex, caudate nucleus, thalamus and medulla oblongata showed an increase. (4) The percentage decrease of glutamate + glutamine and aspartate + asparagine at 5 and 15 min was highly significant in the cerebral neocortex and caudate nucleus.  相似文献   

11.
Gas chromatography-mass spectrometry was used to evaluate the metabolism of [15N]glutamine in isolated rat brain synaptosomes. In the presence of 0.5 mM glutamine, synaptosomes accumulated this amino acid to a level of 25-35 nmol/mg protein at an initial rate greater than 9 nmol/min/mg of protein. The metabolism of [15N]glutamine generated 15N-labelled glutamate, aspartate, and gamma-aminobutyric acid (GABA). An efflux of both [15N]glutamate and [15N]aspartate from synaptosomes to the medium was observed. Enrichment of 15N in alanine could not be detected because of a limited pool size. Elimination of glucose from the incubation medium substantially increased the rate and amount of [15N]aspartate formed. It is concluded that: (1) With 0.5 mM external glutamine, the glutaminase reaction, and not glutamine transport, determines the rate of metabolism of this amino acid. (2) The primary route of glutamine catabolism involves aspartate aminotransferase which generates 2-oxoglutarate, a substrate for the tricarboxylic acid cycle. This reaction is greatly accelerated by the omission of glucose. (3) Glutamine has preferred access to a population of synaptosomes or to a synaptosomal compartment that generates GABA. (4) Synaptosomes maintain a constant internal level of glutamate plus aspartate of about 70-80 nmol/mg protein. As these amino acids are produced from glutamine in excess of this value, they are released into the medium. Hence synaptosomal glutamine and glutamate metabolism are tightly regulated in an interrelated manner.  相似文献   

12.
The Nostoc in the cephalodia of the lichen Peltigera aphthosa Willd. fixed 15N2 and the bulk of the nitrogen fixed was continuously transferred from it to its eukaryotic partners (a fungus and a green alga, Coccomyxa sp.). Kinetic studies carried out over the first 30 min, after exposure of isolated cephalodia to 15N2, showed that highest initial 15N2-labelling was into NH 4 + . After 12 min little further increase in the NH 4 + label occurred while that in the amide group of glutamine and in glutamate continued to increase. The 15N-labelling of the amino group of glutamine and of aspartate increased more slowly, followed by an increase in the labelling of alanine. When total incorporation of 15N-label was calculated, the overall pattern was found to be rather similar except that, throughout the experiment, the total 15N incorporated into glutamate was about six times greater than that into the amide group of glutamine. Pulse chase experiments, in which 14N2 was added to cephalodia previously exposed to 15N2, showed that the NH 4 + pool rapidly became depleted of 15N-label, followed by decreases in the labelling of glutamate, the amide group of glutamine and aspartate. The 15N-labelling of alanine, however, continued to increase for a period. When isolated cephalodia were treated with L-methionine-SR-sulphoximine, an inhibitor of glutamine synthetase (EC 6.3.1.2), and azaserine, an inhibitor of glutamate synthase (EC 2.6.1.53), there was no detectable labelling in glutamine although the 15N-labelling of glutamate increased unimpaired. On treating the cephalodia with amino-oxyacetate, an inhibitor of aminotransferase activity, the alanine pool decreased. Evidence was obtained that glutamine synthetase and glutamate synthase were located in the Nostoc, and that glutamate dehydrogenase (EC 1.4.1.4) and various amino-transferases were located in the cephalodial fungus. Possible implications of these findings are discussed.Abbreviations MSX L-methionine-SR-sulphoximine - AOA amino-oxyacetate - HEPES N-2-hydroxymethylpiperazine-N-2-ethane sulphonic acid - Tris tris-(hydroxymethyl) methylamine - GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - GPT glutamate-pyruvate aminotransferase - APT aspartate-pyruvate aminotransferase - ADH alanine dehydrogenase - GOT glutamate-oxaloacetate aminotransferase  相似文献   

13.
The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.  相似文献   

14.

Plasma glutamate concentrations are constant despite dynamic changes in diets. Most likely, virtually all the dietary glutamate is metabolized in the gut. The present study investigated permeability and metabolism of dietary glutamate in a Caco-2 intestinal epithelial cell layer model by tracing the fate of [U-13C] or [15N]glutamate added to the apical medium. For comparison, several other labelled essential and non-essential amino acids were tested as well. Almost all the labelled glutamate in the apical medium (98% and 96% at 24 h of the culture, respectively) was incorporated in the cell layer, while it barely appeared at the basolateral side, indicating an almost complete utilization of glutamate. Indeed, the 13C was incorporated into alanine, proline, ornithine, and glutamine, and the 15N was incorporated into alanine, glutamine, ornithine, proline, branched chain amino acids and also found as ammonia indicative of oxidation. In contrast, substantial apical-to-basolateral transport of amino acids (8–85% of uptake) other than glutamate and aspartate was evident in studies using amino acid tracers labelled with 13C, 15N or D. These results suggest that the intestinal epithelial cell monolayer utilizes dietary glutamate which adds to maintaining glutamate homeostasis in the body.

  相似文献   

15.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

16.
Abstract—
  • 1 The in vivo metabolism of glutamate in rat neuron cell bodies and neuropil was studied after intraventricular injection of (U-14C)glutamic acid followed by separation of the tissue into neuronal and neuropil fractions.
  • 2 The losses of amino acid and of radioactivity during the fractionation were equivalent. Recoveries were: glutamate, 32; glutamine, 15; aspartate, 25; GABA, 41; alanine, 30 per cent. In the washed cell fractions glutamine was 45 per cent and alanine 132 per cent higher in the neuronal fraction, glutamate was 62, GABA 77 and aspartate 95 per cent of neuropil levels. This contrasted with results obtained previously for in vitro incorporation. Calculation from these results indicated that 28 per cent of the original cell suspension was neuronal, 72 per cent neuropil. In the final cell preparations, 29 per cent of the neuron cell bodies and 26 per cent of the neuropil were recovered.
  • 3 Specific activity of glutamate in the neuronal fraction 15 min after injection was higher than in the original suspension, but had declined to 30 per cent of its initial value by 2 h. In the neuropil, specific activity of glutamate was below that of the cell suspension at 15 min, but at later times rose above it by up to 40 per cent.
  • 4 Radioactivity was detected in aspartate and glutamine 15 min after injection and GABA by 60 min after injection. In the original cell suspension the specific activity of glutamine was higher than that of glutamate at all times (the Waelsch effect) but aspartate and GABA were lower than glutamate.
  • 5 In the neuronal fraction the specific activity of glutamine was below that of glutamate at all times, indicating a precursor-product relationship. In the neuropil fraction, glutamine specific activity remained above glutamate for the first hour.
  • 6 These results are discussed in relation to the interpretation of the Waelsch effect in terms of metabolic compartmentation.
  相似文献   

17.
The source of nitrogen (N) for the de novo synthesis of brain glutamate, glutamine and GABA remains controversial. Because leucine is readily transported into the brain and the brain contains high activities of branched-chain aminotransferase (BCAT), we hypothesized that leucine is the predominant N-precursor for brain glutamate synthesis. Conscious and unstressed rats administered with [U-13C] and/or [15N]leucine as additions to the diet were killed at 0-9 h of continuous feeding. Plasma and brain leucine equilibrated rapidly and the brain leucine-N turnover was more than 100%/min. The isotopic dilution of [U-13C]leucine (brain/plasma ratio 0.61 +/- 0.06) and [15N]leucine (0.23 +/- 0.06) differed markedly, suggesting that 15% of cerebral leucine-N turnover derived from proteolysis and 62% from leucine synthesis via reverse transamination. The rate of glutamate synthesis from leucine was 5 micro mol/g/h and at least 50% of glutamate-N originally derived from leucine. The enrichment of [5-15N]glutamine was higher than [15N]ammonia in the brain, indicating glial ammonia generation from leucine via glutamate. The enrichment of [15N]GABA, [15N]aspartate, [15N]glutamate greater than [2-15N]glutamine suggests direct incorporation of leucine-N into both glial and neuronal glutamate. These findings provide a new insight for the role of leucine as N-carrier from the plasma pool and within the cerebral compartments.  相似文献   

18.
Decreases in Amino Acid and Acetylcholine Metabolism During Hypoxia   总被引:5,自引:4,他引:1  
Abstract: Hypoxia impairs brain function by incompletely defined mechanisms. Mild hypoxia, which impairs memory and judgment, decreases acetylcholine (ACh) synthesis, but not the levels of ATP or the adenylate energy charge. However, the effects of mild hypoxia on the synthesis of the glucosederived amino acids [alanine, aspartate, γ-amino butyric acid (GABA), glutamate, glutamine, and serine] have not been characterized. Thus, we examined the incorporation of [U-14C]glucose into these amino acids and ACh during anemic hypoxia (injection of NaNO2), hypoxic hypoxia (15 or 10% O2), and hypoxic hypoxia plus hypercarbia (15 or 10% O2 with 5% CO2). In general, the synthesis of the amino acids and of ACh declined in parallel with each type of hypoxia we studied. For example, anemic hypoxia (75 mg/kg of NaNO2) decreased the incorporation of [U-14C]glucose into the amino acids and into ACh similarly. [Percent inhibition: ACh (57.4), alanine (34.4), aspartate (49.2), GABA (61.9). glutamine (59.2), glutamate (51.0), and serine (36.7)]. A comparison of several levels (37.5, 75, 150, 225 mg/kg of NaNO2) of anemic hypoxia showed a parallel decrease in the flux of glucose into ACh and into the amino acids whose synthesis depends on mitochondrial oxidation: GABA (r= 0.98), glutamate (r= 0.99), aspartate (r= 0.96), and glutamine (r= 0.97). The synthesis of the amino acids not dependent on mitochondrial oxidation did not correlate as well with changes in ACh metabolism: serine (r= 0.68) and alanine (r= 0.76). The decreases in glucose incorporation into ACh and into the amino acids with hypoxic hypoxia (15% or 10% O2) or hypoxic hypoxia with 5% CO2 were very similar to those with the two lowest levels of anemic hypoxia. Thus, any explanation of the brain's sensitivity to a decrease in oxygen availability must include the alterations in the metabolism of the amino acid neurotransmitters as well as ACh.  相似文献   

19.
Glucose and Synaptosomal Glutamate Metabolism: Studies with [15N]Glutamate   总被引:1,自引:0,他引:1  
The metabolism of [15N]glutamate was studied with gas chromatography-mass spectrometry in rat brain synaptosomes incubated with and without glucose. [15N]Glutamate was taken up rapidly by the preparation, reaching a steady-state level in less than 5 min. 15N was incorporated predominantly into aspartate and, to a much lesser extent, into gamma-aminobutyrate. The amount of [15N]ammonia formed was very small, and the enrichment of 15N in alanine and glutamine was below the level of detection. Omission of glucose substantially increased the rate and amount of [15N]aspartate generated. It is proposed that in synaptosomes (a) the predominant route of glutamate nitrogen disposal is through the aspartate aminotransferase reaction; (b) the aspartate aminotransferase pathway generates 2-oxoglutarate, which then serves as the metabolic fuel needed to produce ATP; (c) utilization of glutamate via transamination to aspartate is greatly accelerated when flux through the tricarboxylic acid cycle is diminished by the omission of glucose; (d) the metabolism of glutamate via glutamate dehydrogenase in intact synaptosomes is slow, most likely reflecting restriction of enzyme activity by some unknown factor(s), which suggests that the glutamate dehydrogenase reaction may not be near equilibrium in neurons; and (e) the activities of alanine aminotransferase and glutamine synthetase in synaptosomes are very low.  相似文献   

20.
Betsche  Thomas  Eising  Rainer 《Plant and Soil》1986,91(3):367-371
Summary Labelling experiments with15N glutamate and15N alanine were conducted using slices from oat leaves to investigate photorespiratory nitrogen metabolism. It is concluded from the labelling kinetics of glutamine that the refixation of photorespiratory ammonia primarily occurs by glutamine synthetase in the chloroplast. The labelling kinetics of glutamine with15N glutamate indicate that the chloroplastic and cytoplasmic glutamate pools do not exchange easily in oat leaf cells. Alanine was shown to be an important amino donor for photorespiratory glycine formation. This result is discussed with regard to a possible role of alanine in photorespiration. A modification to the scheme of photorespiratory nitrogen metabolism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号