首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background

Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.

Methods/Principal Findings

We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.

Conclusions/Significance

C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.  相似文献   

2.
Q fever is serologically cross-reactive with other intracellular microorganisms. However, studies of the serological status of Mycoplasma pneumoniae and Chlamydophila pneumoniae during Q fever are rare. We conducted a retrospective serological study of M. pneumoniae and C. pneumoniae by enzyme-linked immunosorbent assay (ELISA), a method widely used in clinical practice, in 102 cases of acute Q fever, 39 cases of scrub typhus, and 14 cases of murine typhus. The seropositive (57.8%, 7.7%, and 0%, p<0.001) and seroconversion rates (50.6%, 8.8%, and 0%, p<0.001) of M. pneumoniae IgM, but not M. pneumoniae IgG and C. pneumoniae IgG/IgM, in acute Q fever were significantly higher than in scrub typhus and murine typhus. Another ELISA kit also revealed a high seropositivity (49.5%) and seroconversion rate (33.3%) of M. pneumoniae IgM in acute Q fever. The temporal and age distributions of patients with positive M. pneumoniae IgM were not typical of M. pneumoniae pneumonia. Comparing acute Q fever patients who were positive for M. pneumoniae IgM (59 cases) with those who were negative (43 cases), the demographic characteristics and underlying diseases were not different. In addition, the clinical manifestations associated with atypical pneumonia, including headache (71.2% vs. 81.4%, p=0.255), sore throat (8.5% vs. 16.3%, p=0.351), cough (35.6% vs. 23.3%, p=0.199), and chest x-ray suggesting pneumonia (19.3% vs. 9.5%, p=0.258), were unchanged between the two groups. Clinicians should be aware of the high seroprevalence of M. pneumoniae IgM in acute Q fever, particularly with ELISA kits, which can lead to misdiagnosis, overestimations of the prevalence of M. pneumoniae pneumonia, and underestimations of the true prevalence of Q fever pneumonia.  相似文献   

3.

Background

Despite increased identification of spotted fever group rickettsioses (SFGR) in animals and arthropods, human SFGR are poorly characterized in Taiwan.

Methods

Patients with suspected Q fever, scrub typhus, murine typhus, leptospirosis, and dengue fever from April 2004 to December 2009 were retrospectively investigated for SFGR antibodies (Abs). Sera were screened for Rickettsia rickettsii Abs by indirect immunofluorescence antibody assay (IFA), and those with positive results were further examined for Abs against R. rickettsii, R. typhi, R. felis, R. conorii, and R. japonica using micro-immunofluorescence (MIF) tests. Polymerase chain reaction (PCR) for detection of SFGR DNA was applied in those indicated acute infections. Case geographic distribution was made by the geographic information system software.

Results

A total of 413 cases with paired serum, including 90 cases of Q fever, 47 cases of scrub typhus, 12 cases of murine typhus, 6 cases of leptospirosis, 3 cases of dengue fever, and 255 cases of unknown febrile diseases were investigated. Using IFA tests, a total of 49 cases with 47 (11.4%) and 4 (1.0%) cases had sera potentially positive for R. rickettsii IgG and IgM, respectively. In the 49 cases screened from IFA, MIF tests revealed that there were 5 cases of acute infections (3 possible R. felis and 2 undetermined SFGR) and 13 cases of past infections (3 possible R. felis and 10 undetermined SFGR). None of the 5 cases of acute infection had detectable SFGR DNA in the blood specimen by PCR. Possible acute infection of R. felis was identified in both one case of Q fever and scrub typhus. The geographic distribution of SFGR cases is similar with that of scrub typhus.

Conclusions

Human SFGR exist and are neglected diseases in southern Taiwan, particularly for the species closely-related to R. felis.  相似文献   

4.

Background

Little is known about the development of chronic Q fever in occupational risk groups. The aim of this study was to perform long-term follow-up of Coxiella burnetii seropositive veterinarians and investigate the course of IgG phase I and phase II antibodies against C. burnetii antigens and to compare this course with that in patients previously diagnosed with acute Q fever.

Methods

Veterinarians with IgG phase I ≥1:256 (immunofluorescence assay) that participated in a previous seroprevalence study were asked to provide a second blood sample three years later. IgG antibody profiles were compared to a group of acute Q fever patients who had IgG phase I ≥1:256 twelve months after diagnosis.

Results

IgG phase I was detected in all veterinarians (n = 76) and in 85% of Q fever patients (n = 98) after three years (p<0.001). IgG phase I ≥1:1,024, indicating possible chronic Q fever, was found in 36% of veterinarians and 12% of patients (OR 3.95, 95% CI: 1.84–8.49).

Conclusions

IgG phase I persists among veterinarians presumably because of continuous exposure to C. burnetii during their work. Serological and clinical follow-up of occupationally exposed risk groups should be considered.  相似文献   

5.

Background

Community-acquired pneumonia (CAP) is a frequent complication of chronic obstructive pulmonary disease (COPD), but previous studies are often contradictory.

Objectives

We aimed to ascertain the characteristics and outcomes of CAP in patients with COPD as well as to determine the risk factors for mortality and Pseudomonas aeruginosa pneumonia in COPD patients with CAP. We also describe the etiology and outcomes of CAP in COPD patients receiving chronic oxygen therapy at home and those receiving inhaled steroids.

Methods

An observational analysis of a prospective cohort of hospitalized adults with CAP (1995–2011) was performed.

Results

We documented 4121 CAP episodes, of which 983 (23.9%) occurred in patients with COPD; the median FEV1 value was 50%, and 57.8% were classified as stage III or IV in the GOLD classification. Fifty-eight per cent of patients were receiving inhaled steroids, and 14.6% chronic oxygen therapy at home. Patients with COPD presented specific clinical features. S. pneumoniae was the leading causative organism overall, but P. aeruginosa was more frequent in COPD (3.4 vs. 0.5%; p<0.001). Independent risk factors for case-fatality rate in patients with COPD were multilobar pneumonia, P. aeruginosa pneumonia, and high-risk PSI classes. Prior pneumococcal vaccination was found to be protective. FEV1 was an independent risk factor for P. aeruginosa pneumonia.

Conclusions

CAP in patients with COPD presents specific characteristics and risk factors for mortality. Prior pneumococcal vaccine has a beneficial effect on outcomes. P. aeruginosa pneumonia is associated with low FEV1 values and poor prognosis.  相似文献   

6.

Background and Aims

Q fever is a bacterial zoonosis caused by infection with Coxiella burnetii. It is well established that Q fever causes fetal loss in small ruminants. The suspicion has been raised that pregnant women may also experience adverse pregnancy outcome when the infection is acquired or reactivated during pregnancy. The purpose of this study was to assess the potential association between serologic markers of infection with C.burnetii and spontaneous abortion.

Methods

A nested case-control study within the Danish National Birth Cohort, a cohort of 100,418 pregnancies recruited from 1996–2002. Women were recruited in first trimester of pregnancy and followed prospectively. Median gestational age at enrolment was 8 weeks (25 and 75 percentiles: 7 weeks; 10 weeks). During pregnancy, a blood sample was collected at gestational week 6–12 and stored in a bio bank. For this study, a case sample of 218 pregnancies was drawn randomly among the pregnancies in the cohort which ended with a miscarriage before 22 gestational weeks, and a reference group of 482 pregnancies was selected in a random fashion among all pregnancies in the cohort. From these pregnancies, serum samples were screened for antibodies against C. burnetii in a commercial enzyme-linked immunosorbent assay (ELISA). Samples that proved IgG or IgM antibody positive were subsequently confirmatory tested by an immunofluorescence (IFA) test.

Results

Among cases, 11 (5%) were C. burnetii positive in ELISA of which one was confirmed in the IFA assay compared to 29 (6%) ELISA positive and 3 IFA confirmed in the random sample.

Conclusions

We found no evidence of a higher prevalence of C.burnetii antibodies in serum samples from women who later miscarried and the present study does not indicate a major association between Q fever infection and spontaneous abortion in humans. Very early first trimester abortions were, however, not included in the study.  相似文献   

7.

Background

Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Epidemiologically, animals are considered reservoirs and humans incidental hosts.

Methodology/Principal Findings

We investigated Q fever in rural Senegal. Human samples (e.g., sera, saliva, breast milk, feces) were screened in the generally healthy population of two villages of the Sine-Saloum region. Ticks were collected in four regions. Seroprevalence was studied by immunofluorescence, and all other samples were tested by two qPCR systems for detection of C. burnetii. Positive samples were genotyped (multispacer typing) by amplification and sequencing of three spacers. Strains were isolated by cell culture. We found that the seroprevalence may be as high as 24.5% (59 of 238 studied) in Dielmo village. We identified spontaneous excretion of C. burnetii by humans through faeces and milk. Hard and soft ticks (8 species) were infected in 0–37.6%. We identified three genotypes of C. burnetii. The previously identified genotype 6 was the most common in ticks in all studied regions and the only one found in human samples. Three strains of genotype 6 of C. burnetii were also recovered from soft tick Ornithodoros sonrai. Two other genotypes found in ticks, 35 and 36, were identified for the first time.

Conclusions/Significance

Q fever should be considered a significant public health threat in Senegal. Humans, similar to other mammals, may continuously excrete C. burnetii.  相似文献   

8.

Background

Q fever is a zoonosis caused by Coxiella burnetii, a Gram negative bacterium present worldwide. Small ruminants are considered the main reservoirs for infection of humans. This study aimed to estimate the extent of C. burnetii infection among sheep and goats in part of The Gambia.

Methodology/Principal Findings

This survey was carried out from March to May 2012 at two areas in The Gambia. The first area comprised a cluster of seven rural villages situated 5–15 km west of Farafenni as well as the local abattoir. A second sampling was done at the central abattoir in Abuko (30 km from the capital, Banjul) in the Western Region. Serum samples were obtained from 490 goats and 398 sheep. In addition, 67 milk samples were obtained from lactating dams. Sera were tested with a Q fever ELISA kit. C. burnetii DNA was extracted from milk samples and then detected using a specific quantitative multiplex PCR assay, targeting the IS1111a element. A multivariable mixed logistic regression model was used to examine the relationship between seropositivity and explanatory variables. An overall seroprevalence of 21.6% was found. Goats had a significantly higher seroprevalence than sheep, respectively 24.2% and 18.5%. Seropositive animals were significantly older than seronegative animals. Animals from the villages had a significantly lower seroprevalence than animals from the central abattoir (15.1% versus 29.1%). C. burnetii DNA was detected in 2 out of 67 milk samples, whereas 8 samples gave a doubtful result.

Conclusion/Significance

A substantial C. burnetii seroprevalence in sheep and goats in The Gambia was demonstrated. People living in close proximity to small ruminants are exposed to C. burnetii. Q fever should be considered as a possible cause of acute febrile illness in humans in The Gambia. Future studies should include a simultaneous assessment of veterinary and human serology, and include aetiology of febrile illness in local clinics.  相似文献   

9.

Background

Coxiella burnetii, the etiologic agent of Q fever, is a highly infectious zoonotic bacterium. Genetic information about the strains of this worldwide distributed agent circulating on the African continent is limited. The aim of the present study was the genetic characterization of C. burnetii DNA samples detected in ticks collected from Ethiopian cattle and their comparison with other genotypes found previously in other parts of the world.

Methodology/Principal Findings

A total of 296 tick samples were screened by real-time PCR targeting the IS1111 region of C. burnetii genome and from the 32 positive samples, 8 cases with sufficient C. burnetii DNA load (Amblyomma cohaerens, n = 6; A. variegatum, n = 2) were characterized by multispacer sequence typing (MST) and multiple-locus variable-number tandem repeat analysis (MLVA). One novel sequence type (ST), the proposed ST52, was identified by MST. The MLVA-6 discriminated the proposed ST52 into two newly identified MLVA genotypes: type 24 or AH was detected in both Amblyomma species while type 26 or AI was found only in A. cohaerens.

Conclusions/Significance

Both the MST and MLVA genotypes of the present work are closely related to previously described genotypes found primarily in cattle samples from different parts of the globe. This finding is congruent with the source hosts of the analyzed Ethiopian ticks, as these were also collected from cattle. The present study provides genotype information of C. burnetii from this seldom studied East-African region as well as further evidence for the presumed host-specific adaptation of this agent.  相似文献   

10.

Background

Q fever is an occupational risk for veterinarians, however little is known about the risk for veterinary medicine students. This study aimed to assess the seroprevalence of Coxiella burnetii among veterinary medicine students and to identify associated risk factors.

Methods

A cross-sectional study with questionnaire and blood sample collection was performed among all veterinary medicine students studying in the Netherlands in 2006. Serum samples (n = 674), representative of all study years and study directions, were analyzed for C. burnetii IgG and IgM phase I and II antibodies with an immunofluorescence assay (IFA). Seropositivity was defined as IgG phase I and/or II titer of 1∶32 and above.

Results

Of the veterinary medicine students 126 (18.7%) had IgG antibodies against C. burnetii. Seropositivity associated risk factors identified were the study direction ‘farm animals’ (Odds Ratio (OR) 3.27 [95% CI 2.14–5.02]), advanced year of study (OR year 6: 2.31 [1.22–4.39] OR year 3–5 1.83 [1.07–3.10]) having had a zoonosis during the study (OR 1.74 [1.07–2.82]) and ever lived on a ruminant farm (OR 2.73 [1.59–4.67]). Stratified analysis revealed study direction ‘farm animals’ to be a study-related risk factor apart from ever living on a farm. In addition we identified a clear dose-response relation for the number of years lived on a farm with C. burnetii seropositivity.

Conclusions

C. burnetii seroprevalence is considerable among veterinary medicine students and study related risk factors were identified. This indicates Q fever as an occupational risk for veterinary medicine students.  相似文献   

11.
Coxiella burnetii is an obligate intracellular bacterium that causes the zoonotic disease Q fever. Because C. burnetii is highly infectious, can survive under a variety of environmental conditions, and has been weaponized in the past, it is classified as a select agent and is considered a potential bioweapon. The agent is known to be present in domestic livestock and in wild animal populations, but the background levels of C. burnetii in the environment have not been reported. To better understand the amount of C. burnetii present in the environment of the United States, more than 1,600 environmental samples were collected from six geographically diverse parts of the United States in the years 2006 to 2008. DNA was purified from these samples, and the presence of C. burnetii DNA was evaluated by quantitative PCR of the IS1111 repetitive element. Overall, 23.8% of the samples were positive for C. burnetii DNA. The prevalence in the different states ranged from 6 to 44%. C. burnetii DNA was detected in locations with livestock and also in locations with primarily human activity (post offices, stores, schools, etc.). This study demonstrates that C. burnetii is fairly common in the environment in the United States, and any analysis of C. burnetii after a suspected intentional release should be interpreted in light of these background levels. It also suggests that human exposure to C. burnetii may be more common than what is suggested by the number of reported cases of Q fever.The Gram-negative obligate intracellular bacterium Coxiella burnetii can infect humans and cause Q fever, an acute febrile illness (15, 17). Most cases of Q fever have fairly nonspecific symptoms, such as high fever, headache, myalgia, cough, and fatigue (29). Over one-third of patients may show signs of pneumonia or hepatitis (17). Acute cases typically resolve in 1 to 2 weeks, but a small percentage of Q fever cases result in a chronic infection that can present as endocarditis and be life-threatening (12).Q fever occurs worldwide, and numerous natural outbreaks have been reported in the United States (2, 23, 25) and other countries (5, 11, 18, 20, 22, 24). An ongoing natural outbreak in the Netherlands resulted in more than 2,000 cases of Q fever from 2007 to 2009 (27). In the United States Q fever became a nationally notifiable disease in 1999, and increasing numbers of cases have been reported to the CDC in recent years. However, the highest number of annual cases in the United States so far has been 171, reported in 2007 (8). Although this is a fairly small number of reported cases, it is possible that the number of actual cases in the United States is much higher. The relatively nonspecific nature of Q fever symptoms makes the disease difficult to diagnose, and people infected with C. burnetii are likely to show a diversity of symptoms with variable severity. The idea that Q fever is underreported is supported by our recent data using serum samples from the National Health and Nutrition Examination Survey (NHANES) to determine that the seroprevalence in the United States among people who are ≥20 years old is 3.1% (1).A common mechanism for people to become infected with C. burnetii is the inhalation of aerosolized bacteria. Potential sources for aerosolized C. burnetii are livestock and other animals. It is known that many herds of livestock are infected with C. burnetii and that seroprevalence rates in a variety of wild animal species can be quite high (17). Infected livestock herds do not typically show clinical signs of infection, but surges in abortion rates have been reported, particularly with goats (9, 10, 17). It is known that C. burnetii can replicate to high levels in the placenta of infected animals and that infectious C. burnetii can be spread to humans during parturition (9). The prevalence of C. burnetii in animals makes contact with animals a likely risk factor for Q fever. For example, the ongoing Q fever outbreak in the Netherlands has been linked to Q fever infections in goat farms (27), and we have recently found that 22.2% of a group of 508 veterinarians had antibodies against C. burnetii, a much higher seroprevalence than in the general U.S. population (31).C. burnetii exists as a replicating large-cell variant (LCV), but nonreplicating bacteria can form a more stable small-cell variant (SCV) (4). Although it is not an endospore, the SCV form of Coxiella is known to be very stable under a variety of conditions (16). C. burnetii is also highly infectious, with a dose of 1 to 10 organisms capable of causing Q fever in humans (30). These unique features of C. burnetii, along with its aerosol route of transmission, have led to the designation of C. burnetii as a category B bioterrorism weapon and inclusion on the list of select agents. The potential for the use of C. burnetii as a bioweapon was explored in detail by the U.S. bioweapons program of the 1950s and 1960s (26). Although not typically lethal, C. burnetii is considered a threat due to its ability to cause widespread debilitating illness. Indeed, many U.S. soldiers returning from Iraq between 2005 and 2008 suffered from Q fever while deployed (6, 7). These cases are suspected to be naturally acquired infections.The potential for both intentional releases and natural outbreaks makes it important to understand the presence of C. burnetii in the environment. Investigations of the source of Q fever cases will include a determination of the presence of C. burnetii in the environment from which the bacteria may have been acquired. The purpose of this study was to analyze a large number of samples across a wide geographic distribution in the United States and to establish a baseline for the presence of C. burnetii in different regions of the country.  相似文献   

12.

Background

Pneumococcal pneumonia causes significant morbidity and mortality among adults. Given limitations of diagnostic tests for non-bacteremic pneumococcal pneumonia, most studies report the incidence of bacteremic or invasive pneumococcal disease (IPD), and thus, grossly underestimate the pneumococcal pneumonia burden. We aimed to develop a conceptual and quantitative strategy to estimate the non-bacteremic disease burden among adults with community-acquired pneumonia (CAP) using systematic study methods and the availability of a urine antigen assay.

Methods and Findings

We performed a systematic literature review of studies providing information on the relative yield of various diagnostic assays (BinaxNOW® S. pneumoniae urine antigen test (UAT) with blood and/or sputum culture) in diagnosing pneumococcal pneumonia. We estimated the proportion of pneumococcal pneumonia that is bacteremic, the proportion of CAP attributable to pneumococcus, and the additional contribution of the Binax UAT beyond conventional diagnostic techniques, using random effects meta-analytic methods and bootstrapping. We included 35 studies in the analysis, predominantly from developed countries. The estimated proportion of pneumococcal pneumonia that is bacteremic was 24.8% (95% CI: 21.3%, 28.9%). The estimated proportion of CAP attributable to pneumococcus was 27.3% (95% CI: 23.9%, 31.1%). The Binax UAT diagnosed an additional 11.4% (95% CI: 9.6, 13.6%) of CAP beyond conventional techniques. We were limited by the fact that not all patients underwent all diagnostic tests and by the sensitivity and specificity of the diagnostic tests themselves. We address these resulting biases and provide a range of plausible values in order to estimate the burden of pneumococcal pneumonia among adults.

Conclusions

Estimating the adult burden of pneumococcal disease from bacteremic pneumococcal pneumonia data alone significantly underestimates the true burden of disease in adults. For every case of bacteremic pneumococcal pneumonia, we estimate that there are at least 3 additional cases of non-bacteremic pneumococcal pneumonia.  相似文献   

13.

Objectives

There is a large spectrum of viral, bacterial, fungal, and prion pathogens that cause central nervous system (CNS) infections. As such, identification of the etiological agent requires multiple laboratory tests and accurate diagnosis requires clinical and epidemiological information. This hospital-based study aimed to determine the main causes of acute meningitis and encephalitis and enhance laboratory capacity for CNS infection diagnosis.

Methods

Children and adults patients clinically diagnosed with meningitis or encephalitis were enrolled at four reference health centers. Cerebrospinal fluid (CSF) was collected for bacterial culture, and in-house and multiplex RT-PCR testing was conducted for herpes simplex virus (HSV) types 1 and 2, mumps virus, enterovirus, varicella zoster virus (VZV), Streptococcus pneumoniae, HiB and Neisseria meningitidis.

Results

Out of 140 enrolled patients, the mean age was 23.9 years, and 58% were children. Bacterial or viral etiologies were determined in 51% of patients. Five Streptococcus pneumoniae cultures were isolated from CSF. Based on in-house PCR analysis, 25 patients were positive for S. pneumoniae, 6 for N. meningitidis, and 1 for H. influenzae. Viral multiplex PCR identified infections with enterovirus (n = 26), VZV (n = 4), and HSV-1 (n = 2). No patient was positive for mumps or HSV-2.

Conclusions

Study findings indicate that S. pneumoniae and enteroviruses are the main etiologies in this patient cohort. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve health outcomes of CNS infection cases in Georgia.  相似文献   

14.

Background

Lower respiratory tract infections continue to exact unacceptable worldwide mortality, often because the infecting pathogen cannot be identified. The respiratory epithelia provide protection from pneumonias through organism-specific generation of antimicrobial products, offering potential insight into the identity of infecting pathogens. This study assesses the capacity of the host gene expression response to infection to predict the presence and identity of lower respiratory pathogens without reliance on culture data.

Methods

Mice were inhalationally challenged with S. pneumoniae, P. aeruginosa, A. fumigatus or saline prior to whole genome gene expression microarray analysis of their pulmonary parenchyma. Characteristic gene expression patterns for each condition were identified, allowing the derivation of prediction rules for each pathogen. After confirming the predictive capacity of gene expression data in blinded challenges, a computerized algorithm was devised to predict the infectious conditions of subsequent subjects.

Results

We observed robust, pathogen-specific gene expression patterns as early as 2 h after infection. Use of an algorithmic decision tree revealed 94.4% diagnostic accuracy when discerning the presence of bacterial infection. The model subsequently differentiated between bacterial pathogens with 71.4% accuracy and between non-bacterial conditions with 70.0% accuracy, both far exceeding the expected diagnostic yield of standard culture-based bronchoscopy with bronchoalveolar lavage.

Conclusions

These data substantiate the specificity of the pulmonary innate immune response and support the feasibility of a gene expression-based clinical tool for pneumonia diagnosis.  相似文献   

15.

Background

Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia) and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN) are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae.

Methodology/Principal Findings

We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ß production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-α response.

Conclusions/Significance

Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.  相似文献   

16.

Background

A stationary association between climate factors and epidemics of Mycoplasma pneumoniae (M. pneumoniae) pneumonia has been widely assumed. However, it is unclear whether elements of the local climate that are relevant to M. pneumoniae pneumonia transmission have stationary signatures of climate factors on their dynamics over different time scales.

Methods

We performed a cross-wavelet coherency analysis to assess the patterns of association between monthly M. pneumoniae cases in Fukuoka, Japan, from 2000 to 2012 and indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO).

Results

Monthly M. pneumoniae cases were strongly associated with the dynamics of both the IOD and ENSO for the 1–2-year periodic mode in 2005–2007 and 2010–2011. This association was non-stationary and appeared to have a major influence on the synchrony of M. pneumoniae epidemics.

Conclusions

Our results call for the consideration of non-stationary, possibly non-linear, patterns of association between M. pneumoniae cases and climatic factors in early warning systems.  相似文献   

17.

Background  

Q fever, a worldwide zoonotic disease caused by Coxiella burnetii, is endemic in northern Spain where it has been reported as responsible for large series of human pneumonia cases and domestic ruminants' reproductive disorders. To investigate pathogen exposure among domestic ruminants in semi-extensive grazing systems in northern Spain, a serosurvey was carried out in 1,379 sheep (42 flocks), 626 beef cattle (46 herds) and 115 goats (11 herds). Serum antibodies were analysed by ELISA and positive samples were retested by Complement Fixation test (CFT) to detect recent infections.  相似文献   

18.

Background

Characteristics of patients with community-acquired pneumonia (CAP) due to pandemic influenza A 2009 (H1N1) have been inadequately compared to CAP caused by other respiratory pathogens. The performance of prediction rules for CAP during an epidemic with a new infectious agent are unknown.

Methods

Prospective, population-based study from November 2008–November 2009, in centers representing 70% of hospital beds in Iceland. Patients admitted with CAP underwent evaluation and etiologic testing, including polymerase chain reaction (PCR) for influenza. Data on influenza-like illness in the community and overall hospital admissions were collected. Clinical and laboratory data, including pneumonia severity index (PSI) and CURB-65 of patients with CAP due to H1N1 were compared to those caused by other agents.

Results

Of 338 consecutive and eligible patients 313 (93%) were enrolled. During the pandemic peak, influenza A 2009 (H1N1) patients constituted 38% of admissions due to CAP. These patients were younger, more dyspnoeic and more frequently reported hemoptysis. They had significantly lower severity scores than other patients with CAP (1.23 vs. 1.61, P = .02 for CURB-65, 2.05 vs. 2.87 for PSI, P<.001) and were more likely to require intensive care admission (41% vs. 5%, P<.001) and receive mechanical ventilation (14% vs. 2%, P = .01). Bacterial co-infection was detected in 23% of influenza A 2009 (H1N1) patients with CAP.

Conclusions

Clinical characteristics of CAP caused by influenza A 2009 (H1N1) differ markedly from CAP caused by other etiologic agents. Commonly used CAP prediction rules often failed to predict admissions to intensive care or need for assisted ventilation in CAP caused by the influenza A 2009 (H1N1) virus, underscoring the importance of clinical acumen under these circumstances.  相似文献   

19.

Background

Q fever, a zoonosis due to Coxiella burnetii infection, exhibits sexual dimorphism; men are affected more frequently and severely than women for a given exposure. Here we explore whether the severity of C. burnetii infection in mice is related to differences in male and female gene expression profiles.

Methodology/Principal Findings

Mice were infected with C. burnetii for 24 hours, and gene expression was measured in liver cells using microarrays. Multiclass analysis identified 2,777 probes for which expression was specifically modulated by C. burnetti infection. Only 14% of the modulated genes were sex-independent, and the remaining 86% were differentially expressed in males and females. Castration of males and females showed that sex hormones were responsible for more than 60% of the observed gene modulation, and this reduction was most pronounced in males. Using functional annotation of modulated genes, we identified four clusters enriched in males that were related to cell-cell adhesion, signal transduction, defensins and cytokine/Jak-Stat pathways. Up-regulation of the IL-10 and Stat-3 genes may account for the high susceptibility of men with Q fever to C. burnetii infection and autoantibody production. Two clusters were identified in females, including the circadian rhythm pathway, which consists of positive (Clock, Arntl) and negative (Per) limbs of a feedback loop. We found that Clock and Arntl were down-modulated whereas Per was up-regulated; these changes may be associated with efficient bacterial elimination in females but not in males, in which an exacerbated host response would be prominent.

Conclusion

This large-scale study revealed for the first time that circadian rhythm plays a major role in the anti-infectious response of mice, and it provides a new basis for elucidating the role of sexual dimorphism in human infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号