首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The principal goal of this study is to evaluate the interaction of Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles with calf thymus DNA. The magnetic nanoparticles were previously prepared by a chemical co-precipitation method, and the surface of the Fe3O4 nanoparticles was coated with CaAl layered double hydroxides. The antiparkinsonian drug “L-Dopa” was carried by this core–shell nanostructure to achieve the drug delivery system with suitable properties for biological applications. Also, the interaction of Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles with CT-DNA was studied using, UV–Visible spectroscopy, viscosity, circular dichroism (CD), and fluorescence spectroscopy techniques. The results of investigations demonstrated that Fe3O4@CaAl-LDH@L-Dopa and Fe3O4@CaAl-LDH nanoparticles have interacted via minor groove binding and intercalated to CT-DNA, respectively.  相似文献   

2.
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability.  相似文献   

3.
In this work, the possibility of preparing a nanoparticle with improved treatment properties was investigated. In this regard, synthesis, characterization, in vitro cytotoxicity and DNA binding of Fe3O4@oleate/oseltamivir magnetic nanoparticles (MNPs) were investigated. Fe3O4 nanoparticles were synthesized via chemical co-precipitation and coated by oleate bilayers. Then, Fe3O4@OA MNPs were functionalized with an antiviral drug (oseltamivir), for better biological applications. The MNPs were subsequently characterized by zeta sizer and Zeta potential measurements, Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM) analyses. The TEM image demonstrated that average sizes of Fe3O4@OA/oseltamivir MNPs were about 8?nm. The in vitro cytotoxicity of Fe3O4@OA/oseltamivir MNPs was studied against cancer cell lines (MCF-7 and MDA-MB-231) and compared with oseltamivir drug. The results illustrated that Fe3O4@OA/oseltamivir magnetic nanoparticles have better antiproliferative effects on the mentioned cell lines as compared with oseltamivir. Also, in vitro DNA binding studies were done by UV–Vis, circular dichroism, and Fluorescence spectroscopy. The results indicated that Fe3O4@OA/oseltamivir MNPs bound to DNA via groove binding. Moreover, this magnetic nanofluid has potential for magnetic hyperthermia therapy due to magnetic core of its nanoparticles.

Communicated by Ramaswamy H. Sarma  相似文献   


4.
Abstract

Flavobacterium ATCC 27551 was used as a model system for the preparation of magnetic biocatalysts. The magnetic modification was carried out by covalently binding carboxylate- and amino-modified magnetic nanoparticles onto cells. Magnetic Fe3O4 nanoparticles were also used for ionic adsorption on the cell surface. Magnetically modified cells were concentrated using a magnet and exhibited organophosphate hydrolyzing activity. The Taguchi method was used to optimize the binding of the magnetic nanoparticles on the cell surface. SEM image analyses demonstrated good linkage of the magnetic nanoparticles over the Flavobacterium ATCC 27551 cell surface. Under optimal conditions, the magnetic cells displayed specific activity ratios of 93%, 89% and 95%, compared with untreated cells, after the covalent coupling with carboxylate- and amino-modified magnetic nanoparticles and the ionic adsorption of magnetic Fe3O4 nanoparticles, respectively.  相似文献   

5.
We developed a new magnetic nanovector to improve the efficiency and targeting of transgene therapy for oral squamous cell carcinoma (OSCC). Positively charged polymer PEI-modified Fe3O4 magnetic nanoparticles were tested as gene transfer vectors in the presence of a magnetic field. The Fe3O4 nanoparticles were prepared by a co-precipitation method and had good dispersibility in water. These nanoparticles modified by PEI were combined with negatively charged pACTERT-EGFP via electrostatic interaction. The transfection efficiency of the magnetic nano-gene vector with the magnetic field was determined by a fluorescence-inverted microscope and flow cytometry. The results showed significant improvement compared with the control group (p < 0.05). The magnetic complexes also exhibited up to 6-times higher transfection efficiency compared with commonly used PEI or lipofectin. On the basis of these results, the antitumor effect with suicide gene therapy using pACTERT-TRAIL in vitro and vivo was evaluated. In vitro apoptosis was determined with the Annexin V-FITC Apoptosis Detection Kit. The results suggested that PEI-modified Fe3O4 nanoparticles could mediate the killing of Tca83 cells. Furthermore, treatment with pACTERT-TRAIL delivered by magnetic nanoparticles showed a significant cytostatic effect through the induction of apoptosis in a xenograft model. This indicates that magnetic nano-gene vectors could improve the transgene efficiency for Tca83 cells and could exhibit antitumor functions with the plasmid pACTERT-TRAIL. This may be a new way to treat OSCC.  相似文献   

6.
磁性纳米基因载体是一种非病毒基因载体,经过功能性基团修饰后能够连接阳离子转染剂构建细胞转染系统。本文将磁转染技术结合常用的脂质体转染,形成了一种新型动物体细胞转染方法,即称脂质磁转染(Liposomal magnetofection,LMF)。这将为体细胞克隆培育转基因动物提供稳定遗传的细胞系。为构建脂质磁性纳米基因载体复合物系统,本研究利用一种磁性纳米基因载体通过分子自组装与脂质阳离子转染剂结合,用于携带外源基因转染动物体细胞。通过原子力显微镜(AFM)观测、ζ电位-粒度等分析表征手段,研究磁性纳米基因载体的形貌、粒径分布、负载及浓缩DNA的方式。结果表明,通过猪肾(PK)细胞的LMF实验,与脂质体(Lipofectamine2000)介导的转染比较,具有较高的转染率,更重要的是克服了脂质体转染瞬时表达的缺陷。MTT细胞毒性试验结果也显示该方法具有较低的细胞毒性。因此LMF是一种切实可行的高效低毒性的细胞转染方法。  相似文献   

7.
In recent decades, magnetic nanoparticles modified with biocompatible polymers have been recognized as a suitable tool for treating breast cancer. The aim of this research was to evaluate the function of chitosan/agarose-functionalized Fe2O3 nanoparticles on the MCF-7 breast cancer cell line and the expression of BCL2 and BAX genes. Free Fe2O3 nanoparticles were prepared by hydrothermal method. FTIR, XRD, SEM, DLS, VSM, and zeta potential analyses determined the size and morphological characteristics of the synthesized nanoparticles. The effect of Fe2O3 free nanoparticles and formulated Fe2O3 nanoparticles on induction of apoptosis was studied by double-dye Annexin V-FITC and PI. Also, the gene expression results using the PCR method displayed that Fe2O3 formulated nanoparticles induced BAX apoptosis by increasing the anti-apoptotic gene expression and decreasing the expression of pro-apoptotic gene BCL2, so the cell progresses to planned cell death. In addition, the results showed that the BAX/BCL2 ratio decreased significantly after treatment of MCF-7 cells with free Fe2O3 nanoparticles, and the BAX/BCL2 ratio for Fe2O3 formulated nanoparticles increased significantly. Also, to evaluate cell migration, the scratch test was performed, which showed a decrease in motility of MCF-7 cancer cells treated with Fe2O3 nanoparticles formulated with chitosan/agarose at concentrations of 10, 50, 100, and 200 μg/ml.  相似文献   

8.
Xu L  Guo C  Wang F  Zheng S  Liu CZ 《Bioresource technology》2011,102(21):10047-10051
A simple and rapid harvesting method by in situ magnetic separation with naked Fe3O4 nanoparticles has been developed for the microalgal recovery of Botryococcus braunii and Chlorella ellipsoidea. After adding the magnetic particles to the microalgal culture broth, the microalgal cells were adsorbed and then separated by an external magnetic field. The maximal recovery efficiency reached more than 98% for both microalgae at a stirring speed of 120 r/min within 1 min, and the maximal adsorption capacity of these Fe3O4 nanoparticles reached 55.9 mg-dry biomass/mg-particles for B. braunii and 5.83 mg-dry biomass/mg-particles for C. ellipsoidea. Appropriate pH value and high nanoparticle dose were favorable to the microalgae recovery, and the adsorption mechanism between the naked Fe3O4 nanoparticles and the microalgal cells was mainly due to the electrostatic attraction. The developed in situ magnetic separation technology provides a great potential for saving time and energy associated with improving microalgal harvesting.  相似文献   

9.
This study has shown that the toxic effect of nonmodified Fe3O4 nanoparticles in vitro depends on the metabolic and morphological conditions of cells from rat fetuses and newborns. In the process of cultivation, cells with magnetic nanoparticles bind to their surface and penetrate the intracellular space. The sorption of nanoparticles on the cell surface hinders their attachment to the substrate and absorption by spread cells can prevent their proliferation. Magnetic nanoparticles are well sorbed by the upper layer of cell aggregates, whereas cells of the inner layer remain intact. As a result, the cell aggregates acquire the property of responding to a constant magnetic field. These aggregates could potentially be used in cell transplantation for directed cell delivery.  相似文献   

10.
Dynamics of magnetoliposomes binding to the tumor cells and the efficiency of their recognition for targeted drug delivery is largely determined by physical interaction. In this paper we assess the strength of magnetic dipole interaction that occurs between endogenous magnetic nanoparticles in tumor cells and exogenous magnetic nanoparticles as a component of magnetoliposomes, and compare it with the forces of specific binding of the antigen-antibody complex. To assess the strength of magnetic dipole interaction the model of chains of identical particles was used, and an order of magnitude, 10?9 N, was obtained. Thus, the indicated force has an order of magnitude close to the forces of specific binding, and even more. The force of magnetic dipole interaction between a magnetically marked dosage form and tumor cells is virtually the additional specific binding force — “passive targeting” for targeted drug delivery in consequence of the fact that tumor cells tend to contain the number of biogenic nanoparticles of magnetite (Fe3O4) by an order of magnitude greater than normal.  相似文献   

11.

Electron paramagnetic resonance spectroscopy has been applied for the first time to study the bio-distribution of magnetoliposomes formed with magnetite nanoparticles (Fe3O4) in tumors and organs of Lewis carcinoma-bearing mice in the absence and presence of an external magnetic field. The animals of the experimental group were subjected to an external magnetic field (0.6 T) in the tumor area after intravenous injection of magnetoliposomes at a dose of 7.56 Fe/kg. Analysis of the electron-spin resonance spectra of mouse organs and tissue samples showed that exposure to a magnetic field resulted in a two-fold increase in Fe3O4 accumulation within the tumor (p < 0.05) compared to the control; this makes it possible to recommend the obtained magnetoliposomes for use as a magnetically controlled carriers for targeted delivery of antitumor agents. A high concentration of superparamagnetic magnetite nanoparticles was detected in the liver in the absence and presence of an external magnetic field. The differences in the accumulation of Fe3O4 in the lungs and liver in the presence of a magnetic field were statistically insignificant.

  相似文献   

12.
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.  相似文献   

13.

Background  

Both thermotherapy and arsenic have been shown to be active against a broad spectrum of cancers. To reduce the limitations of conventional thermotherapy, improve therapeutic anticancer activity, reduce the toxicity of arsenic on normal tissue, and increase tissue-specific delivery, we prepared a nanosized As2O3/Fe3O4 complex (Fe3O4 magnetic nanoparticles encapsulated in As2O3). We assessed the thermodynamic characteristics of this complex and validated the hyperthermia effect, when combined with magnetic fluid hyperthermia (MFH), on xenograft HeLa cells (human cervical cancer cell line) in nude mice. We also measured the effect on the expression of CD44v6, VEGF-C, and MMP-9 which were related to cancer and/or metastasis.  相似文献   

14.
Abstract

Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level.  相似文献   

15.
One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.  相似文献   

16.
Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.  相似文献   

17.
Natural polysaccharides such as κ-carrageenan are an important class of biomaterials for drug delivery. The incorporation of magnetic nanoparticles in polysaccharide hydrogels is currently being explored as a strategy to confer to the hydrogels novel functionalities valuable for specific bio-applications. Within this context, κ-carrageenan magnetic hydrogel nanocomposites have been prepared and the effect of magnetic (Fe3O4) nanofillers in the swelling of the hydrogels and in the release kinetics and mechanism of a model drug (methylene blue) has been investigated. In vitro release studies demonstrated the applicability of the composites in sustained drug release. The mechanism controlling the release seems to be determined by the strength of the gel network and the extent of gel swelling, both being affected by the incorporation of nanofillers. Furthermore, it was demonstrated that the release rate and profile could be tailored using variable Fe3O4 nanoparticles load. Thus, this seems to be a promising strategy for the development of drug delivery systems with tailored released behavior.  相似文献   

18.
In the present research, we report a greener, faster, and low-cost synthesis of gold-coated iron oxide nanoparticles (Fe3O4/Au-NPs) by different ratios (1:1, 2:1, and 3:1 molar ratio) of iron oxide and gold with natural honey (0.5% w/v) under hydrothermal conditions for 20 minutes. Honey was used as the reducing and stabilizing agent, respectively. The nanoparticles were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), vibrating sample magnetometer (VSM), and fourier transformed infrared spectroscopy (FT-IR). The XRD analysis indicated the presence of Fe3O4/Au-NPs, while the TEM images showed the formation of Fe3O4/Au-NPs with diameter range between 3.49 nm and 4.11 nm. The VSM study demonstrated that the magnetic properties were decreased in the Fe3O4/Au-NPs compared with the Fe3O4-NPs. The cytotoxicity threshold of Fe3O4/Au-NPs in the WEHI164 cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was demonstrated no significant toxicity in higher concentration up to 140.0 ppm which can become the main candidates for biological and biomedical applications, such as drug delivery.  相似文献   

19.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

20.
In situ cell separation and immobilization of bacterial cells for biodesulfurization were developed by using superparamagnetic Fe3O4 nanoparticles (NPs). The Fe3O4 NPs were synthesized by coprecipitation followed by modification with ammonium oleate. The surface-modified NPs were monodispersed and the particle size was about 13 nm with 50.8 emu/g saturation magnetization. After adding the magnetic fluids to the culture broth, Rhodococcus erythropolis LSSE8-1 cells were immobilized by adsorption and then separated with an externally magnetic field. The maximum amount of cell mass adsorbed was about 530 g dry cell weight/g particles to LSSE8-1 cells. Analysis showed that the nanoparticles were strongly absorbed to the surface and coated the cells. Compared to free cells, the coated cells not only had the same desulfurizing activity but could also be easily separated from fermentation broth by magnetic force. Based on the adsorption isotherms and Zeta potential analysis, it was believed that oleate-modified Fe3O4 NPs adsorbed bacterial cells mainly because of the nano-size effect and hydrophobic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号