首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical functioning of single chambered microbial fuel cell (MFC) using glass wool as proton exchange membrane (PEM) operated with selectively enriched acidogenic mixed culture was evaluated in terms of bioelectricity production and wastewater treatment. Performance of MFC was studied at two different organic/substrate loading rates (OLR) (2.64 and 3.54 kg COD/m(3)) and operating pH 6 and 7 using non-coated plain graphite electrodes (mediatorless anode; air cathode). Applied OLR in association with operating pH showed marked influence on the power output and substrate degradation efficiency. Higher current density was observed at acidophilic conditions [pH 6; 98.13 mA/m(2) (2.64 kg COD/m(3)-day; 100 Omega) and 111.29 mA/m(2) (3.54 kg COD/m(3)-day; 100 Omega)] rather than neutral conditions [pH 7; 100.52 mA/m(2) (2.64 kg COD/m(3)-day; 100 Omega) and 98.13 mA/m(2) (3.54 kg COD/m(3)-day; 100 Omega)]. On the contrary, effective substrate degradation was observed at neutral pH. MFC performance was evaluated employing polarization curve, impedance analysis, cell potential, Coulombic efficiency and bioprocess monitoring. Sustainable power yield was calculated at stable cell potential.  相似文献   

2.
Single chambered mediatorless microbial fuel cell (MFC; non-catalyzed electrodes) was operated to evaluate the potential of bioelectricity generation from the treatment of composite waste vegetables (EWV) extract under anaerobic microenvironment using mixed consortia as anodic biocatalyst. The system was operated with designed synthetic wastewater (DSW; 0.98 kg COD/m3-day) during adaptation phase and later shifted to EWV and operated at three substrate load conditions (2.08, 1.39 and 0.70 kg COD/m3-day). Experimental data illustrated the feasibility of bioelectricity generation through the utilization of EWV as substrate in MFC. Higher power output (57.38 mW/m2) was observed especially at lower substrate load. The performance of MFC was characterized based on the polarization behavior, cell potentials, cyclic voltammetric analysis and sustainable resistance. MFC operation also documented to stabilize the waste by effective removal of COD (62.86%), carbohydrates (79.84%) and turbidity (55.12%).  相似文献   

3.
An up-flow anaerobic sludge blanket reactor–microbial fuel cell–biological aerated filter (UASB–MFC–BAF) system was developed for simultaneous bioelectricity generation and molasses wastewater treatment in this study. The maximum power density of 1410.2 mW/m2 was obtained with a current density of 4947.9 mA/m2 when the high strength molasses wastewater with chemical oxygen demand (COD) of 127,500 mg/l was employed as the influent. The total COD, sulfate and color removal efficiencies of the proposed system were achieved of 53.2%, 52.7% and 41.1%, respectively. Each unit of this system had respective function and performed well when integrated together. The UASB reactor unit was mainly responsible for COD removal and sulfate reduction, while the MFC unit was used for the oxidation of generated sulfide with electricity generation. The BAF unit dominated color removal and phenol derivatives degradation. This study is a beneficial attempt to combine MFC technology with conventional anaerobic–aerobic processes for actual wastewater treatment.  相似文献   

4.
The effect of anodic biofilm growth and extent of its coverage on the anodic surface of a single chambered mediatorless microbial fuel cell (MFC) was evaluated for bioelectricity generation using designed synthetic wastewater (DSW) and chemical wastewater (CW) as substrates and anaerobic mixed consortia as biocatalyst. Three MFCs (plain graphite electrodes, air cathode, Nafion membrane) were operated separately with variable biofilm coverage [control; anode surface coverage (ASC), 0%], partially developed biofilm [PDB; ASC approximately 44%; 90 days] and fully developed biofilm [FDB; ASC approximately 96%; 180 days] under acidophilic conditions (pH 6) at room temperature. The study depicted the effectiveness of anodic biofilm formation in enhancing the extracellular electron transfer in the absence of mediators. Higher specific power production [29mW/kg COD(R) (CW and DSW)], specific energy yield [100.46J/kg VSS (CW)], specific power yield [0.245W/kg VSS (DSW); 0.282W/kg VSS (CW)] and substrate removal efficiency of 66.07% (substrate degradation rate, 0.903kgCOD/m(3)-day) along with effective functioning fuel cell at relatively higher resistance [4.5kOmega (DSW); 14.9kOmega (CW)] correspond to sustainable power [0.008mW (DSW); 0.021mW (CW)] and effective electron discharge (at higher resistance) and recovery (Coulomb efficiency; 27.03%) were observed especially with FDB operation. Cyclic voltammetry analysis documented six-fold increment in energy output from control (1.812mJ) to PDB (10.666mJ) operations and about eight-fold increment in energy from PDB to FDB (86.856mJ). Biofilm configured MFC was shown to have the potential to selectively support the growth of electrogenic bacteria with robust characteristics, capable of generating higher power yields along with substrate degradation especially operated with characteristically complex wastewaters as substrates.  相似文献   

5.
Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m(2), respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.  相似文献   

6.
In this study, a two-compartment continuous flow microbial fuel cell (MFC) reactor was used to compare the efficiencies of cathode oxygenation by air and by hydrogen peroxide. The MFC reactor had neither a proton-selective membrane nor an electron transfer mediator. At startup, the cathodic compartment was continuously aerated and the anodic compartment was fed with a glucose solution. An increase of electrical power generation from 0.008 to 7.2 mW m(-2) of anode surface with a steady-state potential of 215-225 mV was observed within a period of 12 days. The performance of the air-oxygenated MFC reactor progressively declined over time because of biofilm proliferation in the cathodic compartment. Oxygenation of the cathodic compartment using 300 mL d(-1) of 0.3% hydrogen peroxide solution resulted in a power density of up to 22 mW m(-2) (68.2 mA m(-2)) of anode surface at a potential of 340-350 mV. The use of H2O2 for oxygenation was found to improve the long-term stability of the MFC reactor.  相似文献   

7.
Miniatured floating macrophyte based ecosystem (FME) designed with Eichornia as the major biota was evaluated for bioelectricity generation and wastewater treatment. Three fuel cell assemblies (non-catalyzed electrodes) embedded in FME were evaluated with domestic sewage and fermented distillery wastewater in continuous mode for 210 days. Fermented distillery effluents from biohydrogen production (dark-fermentation) process exhibited effective power generation with simultaneous waste remediation. Two fuel cell assemblies (A1 and A2) showed effective bioelectricity generation. Increasing the organic load of wastewater showed good correlation with both power generation (A1, 211.14 mA/m2; A2, 224.93 mA/m2) and wastewater treatment (COD removal, 86.67% and VFA removal 72.32%). Combining A1 and A2 assemblies depicted stabilized performance with respect to current and voltage along with significant decrease in ohmic and activation losses. FME also exhibited effective removal of nitrates, colour and turbidity from wastewater. The studied miniatured ecological system facilitates both energy generation and wastewater treatment with a sustainable perspective.  相似文献   

8.
Microbial fuel cells (MFCs) have been used to generate electricity from various organic compounds such as acetate, glucose, and lactate. We demonstrate here that electricity can be produced in an MFC using cellulose as the electron donor source. Tests were conducted using two-chambered MFCs, the anode medium was inoculated with mixed or pure culture of cellulose-degrading bacteria Nocardiopsis sp. KNU (S strain) or Streptomyces enissocaesilis KNU (K strain), and the catholyte in the cathode compartment was 50mM ferricyanide as catholyte. The power density for the mixed culture was 0.188mW (188mW/m(2)) at a current of 0.5mA when 1g/L cellulose was used. However, the power density decreased as the cellulose concentration in the anode compartment decreased. The columbic efficiencies (CEs) ranged from 41.5 to 33.4%, corresponding to an initial cellulose concentration of 0.1-1.0g/L. For the pure culture, cellobioase enzyme was added to increase the conversion of cellulose to simple sugars, since electricity production is very low. The power densities for S and K strain pure cultures with cellobioase were 162mW/m(2) and 145mW/m(2), respectively. Cyclic voltammetry (CV) experiments showed the presence of peaks at 380, 500, and 720mV vs. Ag/AgCl for the mixed bacterial culture, indicating its electrochemical activity without an external mediator. Furthermore, this MFC system employs a unique microbial ecology in which both the electron donor (cellulose) and the electron acceptor (carbon paper) are insoluble.  相似文献   

9.
A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 k?. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment.  相似文献   

10.
The performance of a prototype up‐flow single‐chambered microbial fuel cell (MFC) for electrical power generation using brewery wastewater as fuel is reported. The designed reactor consisted of three zones, namely a lower anaerobic digestion zone, a central MFC zone, and an upper effluent clarifier zone. Tests were conducted in batch mode using a beer wastewater as the fuel/electron donor (COD concentration: 430 mg/L) and mixed consortia (both sewage microflora and anaerobic sludge) as a source of electrogenic bacteria. A stable current density of ~2,270 mA/m2 was generated under continuous polarization with a constant external resistance (0.01 kΩ) and cell polarization gave a peak power density of 330 mW/m2 at a current density of 1,680 mA/m2. Electrochemical impedance analysis showed that the overall internal resistance of the reactor was quite low, that is, 8.0 Ω. Cyclic voltammetric analysis of the anodic biofilm at low scan rate revealed quite complex processes at the anode, with three redox peaks, at potentials of 116, 214, and 319 mV (vs. NHE). Biotechnol. Bioeng. 2010;107: 52–58. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m2) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m2). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m2). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices.  相似文献   

12.
Li Z  Yao L  Kong L  Liu H 《Bioresource technology》2008,99(6):1650-1655
To make sure that microbial fuel cells (MFCs) are more convenient to stack, a baffled single-chambered MFC with two groups of electrodes sharing only one anode chamber was designed and the performance was examined. The experiments showed that the prototype MFC generated electrical power (maximum of 133 mW/m(2)) while removing up to 88% of chemical oxygen demand (COD) in 91 h. Volumetric power increased as electrode area per anode compartment volume increased, indicating that the MFC with two groups of electrodes was better than that with one group. Power density as a function of wastewater concentration was modeled according to saturation kinetics, with a maximum power density of P(max)=164 mW/m(2) (fixed 100 Omega resistor) and half-saturation concentration of K(s)=259 mg/l. The hydraulic retention time (HRT) was examined as a factor influencing the power generation. When it was 15.5h, the voltage and the power density reached the maximum 0.413 V and 108 mW/m(2).  相似文献   

13.
A compact, three‐in‐one, flow‐through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm‐dominated anode consortium enriched under a multimode, continuous‐flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air‐breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50‐mM ferricyanide‐based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5–6 Ω, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area‐based power densities and to enable comparison of various MFC configurations. Published 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

14.
This study aims at evaluating the performance of a two-chambered continuously fed microbial fuel cell with new Ti–TiO2 electrodes for bioelectricity generation from young landfill leachate at varying strength of wastewater (1–50 COD g/L) and hydraulic retention time (HRT, 0.25–2 days). The COD removal efficiency in the MFC increased with time and reached 45 % at full-strength leachate (50 g/L COD) feeding. The current generation increased with increasing leachate strength and decreasing HRT up to organic loading rate of 100 g COD/L/day. The maximum current density throughout the study was 11 A/m2 at HRT of 0.5 day and organic loading rate of 67 g COD/L/day. Coulombic efficiency (CE) decreased from 57 % at feed COD concentration of 1 g/L to less than 1 % when feed COD concentration was 50 g/L. Increase in OLR resulted in increase in power output but decrease in CE.  相似文献   

15.
A miniature-microbial fuel cell (mini-MFC, chamber volume: 1.2 mL) was used to monitor biofilm development from a pure culture of Shewanella oneidensis DSP10 on graphite felt (GF) under minimal nutrient conditions. ESEM evidence of biofilm formation on GF is supported by substantial power density (per device cross-section) from the mini-MFC when using an acellular minimal media anolyte (1500 mW/m2). These experiments demonstrate that power density per volume for a biofilm flow reactor MFC should be calculated using the anode chamber volume alone (250W/m3), rather than with the full anolyte volume. Two oxygen reduction cathodes (uncoated GF or a Pt/vulcanized carbon coating on GF) were also compared to a cathode using uncoated GF and a 50mM ferricyanide catholyte solution. The Pt/C-GF (2-4% Pt by mass) electrodes with liquid cultures of DSP10 produced one order of magnitude larger power density (150W/m3) than bare graphite felt (12W/m3) in this design. These advances are some of the required modifications to enable the mini-MFC to be used in real-time, long-term environmental power generating situations.  相似文献   

16.
Zhu F  Wang W  Zhang X  Tao G 《Bioresource technology》2011,102(15):7324-7328
A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m2. Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density.  相似文献   

17.
A single chamber stackable microbial fuel cell (SCS-MFC) comprising four MFC units was developed. When operated separately, each unit generated a volumetric power density (Pmax,V) of 26.2 W/m3 at 5.8 mA or 475 mV. The total columbic efficiency was 40% for each unit. Parallel connection of four units produced the same level of power output (Pmax,V of 22.8 W/m3 at 27 mA), which was approximately four times higher than a single unit alone. Series connection of four units, however, only generated a maximum power output of 14.7 W/m3 at 730 mV, which was less than the expected value. This energy loss appeared to be caused by lateral current flow between two units, particularly in the middle of the system. The cathode was found to be the major limiting factor in our system. Compared to the stacked operation of multiple separate MFCs, our single chamber reactor does not require a delicate water distribution system and thus is more easily implemented in pre-existing wastewater treatment facilities with serpentine flow paths, such as fixed-bed reactors, with minimal infrastructure changes.  相似文献   

18.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   

19.

Objectives

To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass.

Results

Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m?2, 33 mW m?2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m?2, 78 mW m?2 and 6% respectively.

Conclusions

Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.
  相似文献   

20.
Bio (microbial) fuel cell (microbial fuel cell) with Saccharomyces cerevisiae as anodic biocatalyst was evaluated in terms of power generation and substrate degradation at three redox conditions (5.0, 6.0 and 7.0). Fuel cell was operated in single chamber (open-air cathode) configuration without mediators using non-catalyzed graphite as electrodes. The performance was further studied with increasing loading rate (OLRI, 0.91 kg COD/m3-day; OLRII, 1.43 kg COD/m3). Higher current density was observed at pH 6.0 [160.36 mA/m2 (OLRI); 282.83 mA/m2 (OLRII)] than pH 5.0 (137.24 mA/m2) and pH 7.0 (129.25 mA/m2). Bio-electrochemical behavior of fuel cell was evaluated using cyclic voltammetry which showed the presence of redox mediators (NADH/NAD+; FADH/FAD+). Higher electron discharge was observed at pH 6.0, suggesting higher proton shuttling through the involvement of different redox mediators. The application of yeast based fuel cell can be extended to treat high strength wastewaters with simultaneous power generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号