首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
Summary A novel aqueous two-phase system containing hydrophobically modified ethylene oxide (HM-EO) and sodium dodecyl sulphate (SDS) was developed to enhance the selectivity of protein partitioning in two phases. Phase diagrams of HM-EO/H2O and HM-EO/SDS/H2O were measured, and the mechanism of interaction between HM-EO polymer and the anionic surfactant sodium dodecyl sulphate (SDS) was also discussed. It was found that the improvement of selectivity of protein partitioning was related to the increase of electrostatic potential difference between the two phases because of the charged network formed by mixed micelles of HM-EO and SDS in the bottom phase. With bovine serum albumin (BSA) and lysozyme as model proteins, some factors, such as pH, SDS concentration, conductivity and temperature of the system, were investigated for the influences of protein partition in HM-EO/SDS/H2O systems. The results showed that the addition of SDS not only changed the phase behaviour, but also played an important role in protein partitioning.  相似文献   

2.
The microviscosity in mixed micelles formed in dilute aqueous solutions of sodium dodecyl sulphate (SDS) and a set of non-ionic cellulose ethers of different hydrophobicity has been determined by means of steady-state fluorescence probe techniques. Two hydrophobic probes have been applied in this investigation: 1,3-di(1-pyrenyl)propane (P3P) and perylene. Reference measurements of microviscosity have also been performed on SDS solutions including the uncharged polymers poly(ethyleneoxide) (PEO) or poly(vinylpyrrolidone) (PVP). All compositions investigated showed qualitatively the same general behaviour with an abrupt increase in microviscosity at the critical surfactant concentration where the polymer-surfactant interaction starts (c1) followed by a maximum and an asymptotically declining region as the surfactant concentration was increased further. Comparison with a recent investigation of a specific ethyl(hydroxyethyl)cellulose (EHEC fraction CST-103)/ SDS/water system (Evertsson & Nilsson (1997) Macromolecules, 30, 2377) revealed that the maximum in microviscosity generally corresponds to a low degree of SDS adsorption (≈ 0.5 mmol of SDS per gram of polymer) and consequently to a high polymer content of the mixed micelles formed in the type of systems studied herein. The hydrophobicity of the cellulose derivatives was found to correlate to the amplitude of the overall microviscosity pattern for the mixed micelles, i.e. an increased polymer hydrophobicity gave an increased rigidity of the polymersurfactant aggregates. An approximately exponential relation was demonstrated between the maxima in microviscosity of the different mixed micelles and the surface activities of the corresponding cellulose derivatives. All polymer/surfactant combinations investigated gave aggregates with a higher rigidity than ordinary SDS micelles. The microviscosity of the mixed micelles of the cellulose derivatives and SDS formed close to c1 increased as the temperature rose from 20 to 50 °C. This effect was attributed to an increased hydrophobicity of the cellulose ethers upon temperature elevation, hence giving rise to further close-packing of the aggregate structures.  相似文献   

3.
Hydrolysis of triglycerides by lipase from Rhizopus delemar has been studied in three different types of microemulsion systems. Microemulsions were prepared by using anionic (AOT), cationic (CTAB) and nonionic (C12E4) surfactants. Various parameters affecting the reaction, such as temperature, pH optimum, water content (R = [H2O]/[surfactant]), as well as Km.app and Vapp, were determined using triolein and tributyrin as substrates. Maximum enzyme activity was obtained at R = 9, T = 30°C and pH = 6.5 in anionic surfactant systems, while in cationic, it was found at R = 7, T = 22.5°C and pH = 5.8. The stability of the enzyme was also studied in anionic and cationic systems under various conditions. The enzymatic reaction was also found to be very slow when it was studied in the C12E4 systems.  相似文献   

4.
The scientific study of protein surfactant interactions goes back more than a century, and has been put to practical uses in everything from the estimation of protein molecular weights to efficient washing powder enzymes and products for personal hygiene. After a burst of activity in the late 1960s and early 1970s that established the general principles of how charged surfactants bind to and denature proteins, the field has kept a relatively low profile until the last decade. Within this period there has been a maturation of techniques for more accurate and sophisticated analyses of protein-surfactant complexes such as calorimetry and small angle scattering techniques. In this review I provide an overview of different useful approaches to study these complexes and identify eight different issues which define central concepts in the field. (1) Are proteins denatured by monomeric surfactant molecules, micelles or both? (2) How does unfolding of proteins in surfactant compare with "proper" unfolding in chemical denaturants? Recent work has highlighted the role of shared micelles, rather than monomers, below the critical micelle concentration (cmc) in promoting both protein denaturation and formation of higher order structures. Kinetic studies have extended the experimentally accessible range of surfactant concentrations to far above the cmc, revealing numerous different modes of denaturation by ionic surfactants below and above the cmc which reflect micellar properties as much as protein unfolding pathways. Uncharged surfactants follow a completely different denaturation strategy involving synergy between monomers and micelles. The high affinity of charged surfactants for proteins means that unfolding pathways are generally different in surfactants versus chemical denaturants, although there are common traits. Other issues are as follows: (3) Are there non-denaturing roles for SDS? (4) How reversible is unfolding in SDS? (5) How do solvent conditions affect the way in which surfactants denature proteins? The last three issues compare SDS with "proper" membranes. (6) Do anionic surfactants such as SDS mimic biological membranes? (7) How do mixed micelles interact with globular proteins? (8) How can mixed micelles be used to measure the stability of membrane proteins? The growing efforts to understand the unique features of membrane proteins have encouraged the development of mixed micelles to study the equilibria and kinetics of this class of proteins, and traits which unite globular and membrane proteins have also emerged. These issues emphasise the amazing power of surfactants to both extend the protein conformational landscape and at the same time provide convenient and reversible short-cuts between the native and denatured state for otherwise obdurate membrane proteins.  相似文献   

5.
This communication demonstrates that two-phase aqueous mixed (nonionic/ionic) micellar systems have the potential for improving the separation of proteins from viruses. Specifically, two separation experiments were performed to show that the addition of the anionic surfactant sodium dodecyl sulfate (SDS) to the two-phase aqueous nonionic n-decyl tetra(ethylene oxide) (C(10)E(4)) micellar system increases the yield of a model net positively charged protein, lysozyme, in the micelle-rich phase from 75 to 95%, while still maintaining approximately the same yield of a model net negatively charged virus, bacteriophage P22, in the micelle-poor phase (97% vs. 98%).  相似文献   

6.
The solution properties of hydroxyethyl cellulose (HEC) and hydrophobically modified hydroxyethyl cellulose (HM-HEC) have been investigated by means of viscometric and spectroscopic techniques involving free radical and fluorescent probes. The greater viscosity of HM-HEC solutions above a critical polymer concentration (Cp) of approximately 0·2% has been interpreted in terms of the formation of a three-dimensional network structure in which the polymer chains are effectively crosslinked by the intermolecular association of neighbouring hydrophobic side chains. Cp is considerably less than the predicted polymer coil overlap concentration (C*) of approximately 1%.

The interaction of the polymers with an anionic surfactant, sodium dodecyl sulphate (SDS) has also been investigated. A mechanism involving the interaction of free surfactant with the regions of intermolecular hydrophobic association is suggested to account for the considerable differences in the rheological behaviour of the polymers in the presence of SDS.  相似文献   


7.
Adrenocorticotropin (ACTH) and α-melanocyte stimulating hormone (α-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of α-MSH are the same initial sequence of ACTH and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1–21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in α-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1–24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in α-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems.  相似文献   

8.
Mixed micelles of l,2-diheptanoyl-sn-grycero-3-phosphocholine (DHPC) with ionic detergents were prepared to develop well characterized substrates for the study of lipolytic enzymes. The aggregates that formed on mixing DHPC with the anionic surfactant sodium dodecyl sulfate (SDS) and with the positively charged dodecyl trimethylammonium bromide (DTAB) were investigated using time-resolved fluorescence quenching (TRFQ) to determine the aggregation numbers and bimolecular collision rates, and electron spin resonance (ESR) to measure the hydration index and microviscosity of the micelles at the micelle-water interface. Mixed micelles between the phospholipid and each of the detergents formed in all compositions, yielding interfaces with varying charge, hydration, and microviscosity. Both series of micelles were found to be globular up to 0.7 mole fraction of DHPC, while the aggregation numbers varied within the same concentration range of the components less than 15%. Addition of the zwitterionic phospholipid component increased the degree of counterion dissociation as measured by the quenching of the fluorescence of pyrene by the bromide ions bound to DHPC/DTAB micelles, showing that at 0.6 mole fraction of DHPC 80% of the bromide ions are dissociated from the micelles. The interface water concentration decreased significantly on addition of DHPC to each detergent. For combined phospholipid and detergent concentration of 50 mM the interface water concentration decreased, as measured by ESR of the spin-probes, from 38.5 M/L of interface volume in SDS alone to 9 M/L when the phospholipid was present at 0.7 mole fraction. Similar addition of DHPC to DTAB decreased the interfacial water concentration from 27 M/L to 11 M/L. Determination of the physicochemical parameters of the phospholipid containing mixed micelles here presented are likely to provide important insight into the design of assay systems for kinetic studies of phospholipid metabolizing enzymes.  相似文献   

9.
The interactions between the diblock copolymer S(15)E(63) and the surfactants sodium dodecyl sulfate (SDS), sodium decyl sulfate (SDeS), and sodium octyl sulfate (SOS) have been investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and isothermal titration calorimetry (ITC). The surfactants with the same headgroup differentiate in their chain length. At 20 degrees C, the block copolymer is associated into micelles with a hydrodynamic radius of 11.6 nm, which is composed of a hydrophobic styrene oxide (S) core and a water-swollen oxypolyethylene (PEO or E) corona. The different copolymer/surfactant systems have been studied at a constant copolymer concentration of 2.5 g dm(-3) and in a vast range of surfactant concentrations, from 7.5 x 10(-6) up to 0.75 M. When SDS and SDeS are added to the block copolymer solution, different regions are observed in the DLS data: at low surfactant concentrations (c < 1.0 x 10(-4) M), single surfactant molecules associate with the copolymer micelle, probably the former being solubilized in the micelle core, leading to a certain disruption of the mixed micelle due to repulsive electrostatic interactions between surfactant headgroups followed by a stabilization of the mixed micelle. At higher concentrations (1.0 x 10(-4) < c < 0.1 M), two types of copolymer-surfactant complexes coexist: one large copolymer-rich/surfactant complex and one small complex consisting of one or a few copolymer chains and rich in surfactants. At higher SDS and SDeS concentrations, complete disintegration of mixed micelles takes place. In contrast, SOS-S(15)E(63) interactions are less important up to surfactant concentrations of 0.05 M due to its higher hydrophilicity, reducing the hydrophobic interactions between surfactant alkyl chains and copolymer micelles. At concentration larger than the critical aggregation concentration (cac) of the system, 0.05 M, disruption of copolymer micelles occurs. These regions have been confirmed by transmission electron microscopy. On the other hand, the titration calorimetric data for SDS and SDeS present an endothermic increase indicating the formation of mixed copolymer-rich-surfactant micelles. From that point, important differences in the ITC plot for both surfactants are present. However, the ITC curve obtained after titration of a SOS solution in the copolymer solution is quite similar to that of its titration in water.  相似文献   

10.
The precipitating of effect of sodium dodecyl sulphate (SDS) on the egg white proteins ovalbumin, conalbumin and lysozyme was studied at 25 degrees C and at different pH values. The proteins precipitated below their respective isolectric points, provided the detergent to protein ratio was appropriate. The pH profile of precipitation was different for the three proteins reflecting net charge differences. The binding of SDS to the proteins was studied with [35S]-labelled SDS and for ovalbumin a ratio of 21--28 SDS molecules/protein molecule, dependent on the concentration of SDS initially used, seem to be required for precipitation at pH 4.5. This number, however, is dependent on pH and increases with an increased positive net charge of the protein. The precipitating effect of SDS was identical for ovalbumin, conalbumin and lysozyme when compared on a gram to gram basis (0.1--0.15 g SDS/g precipitated protein). The precipitated protein was denatured as measured by differential scanning calorimetry, but was also completely redissolved if pH was increased to above the isoelectric point. The precipitating effecto f SDS was also examined at elevated temperatures. The two-phase systems of the proteins induced by SDS at 25 degrees C were heated from 25 degrees C to 90 degrees C at a rate of 1.25 degrees C/min. The precipitation behaviour was similar for the three proteins upon heating. When the SDS concentration was increased the precipitation curves were transferred towards lower temperatures and the courses of precipitation became less sharp. The synergistic effect of SDS and heat on protein precipitation was differentiated by denaturation measurements and radioactive labelling. The ratio SDS to precipitated protein gradually diminished towards higher temperatures but no purely thermal precipitation was found.  相似文献   

11.
The solubilization of lipid bilayers by surfactants is accompanied by morphological changes of the bilayer and the emergence of mixed micelles. From a phase equilibrium perspective, the lipid/surfactant/water system is in a two-phase area during the solubilization: a phase containing mixed micelles is in equilibrium with bilayer structures of the lamellar phase. In some cases three phases are present, the single micelle phase replaced by a concentrated and a dilute solution phase. In the case of non-ionic surfactants, the lipid bilayers reach saturation when mixed micelles, often flexible rod-like or thread-like, start to form in the aqueous solution, at a constant chemical potential of the surfactant. The composition of the bilayers also remains fixed during the dissolution. The phase behavior encountered with many charged surfactants is different. The lamellar phase becomes destabilized at a certain content of surfactant in the membrane, and then disintegrates, forming mixed micelles, or a hexagonal phase, or an intermediate phase. Defective bilayer intermediates, such as perforated vesicles, have been found in several systems, mainly with charged surfactants. The perforated membranes, in some systems, go over into thread-like micelles via lace-like structures, often without a clear two-phase region. Intermediates in the form of disks, either micelles or bilayer fragments, have been observed in several cases. Most noteworthy are the planar and circular disks found in systems containing a large fraction of cholesterol in the bilayer. Bile salts are a special class of surfactants that seem to break down the bilayer at low additions. Originally, disk-like mixed micelles were conjectured, with polar membrane lipids building the disk, and the bile salts covering the hydrophobic rim. Later work has shown that flexible cylinders are the dominant intermediates also in these systems, even if the disk-like structures have been re-established as transients in the transformation from mixed micelles to vesicles.  相似文献   

12.
In order to explore the effect of electric charge on detergent solubilization of phospholipid bilayers, the interaction of nine electrically charged surfactants with neutral or electrically charged liposomes has been examined. The detergents belonged to the alkyl pyridinium, alkyl trimethylammonium or alkyl sulphate families. Large unilamellar liposomes formed by egg phosphatidylcholine plus or minus stearylamine or dicetyl phosphate were used. Solubilization was assessed as a decrease in light-scattering of the liposome suspensions. The results suggest that electrostatic forces do not play a significant role in the formation of mixed micelles and that hydrophobic interactions are by far the main forces involved in solubilization. In addition, from the study of thirty different liposome-surfactant systems, we have derived a series of empirical rules that may be useful in predicting the behaviour of untested surfactants: (i) the detergent concentration producing the onset of solubilization (Don) decreases as the alkyl chain length increases; the decrease follows a semi-logarithmic pattern in the case of alkyl pyridinium compounds; (ii) for surfactants with critical micellar concentrations (cmc) less than 6 x 10(-3) M, Don. is independent of the nature of the detergent and the bilayer composition; for detergents having cmc greater than 6 x 10(-3) M, Don. increases linearly with the cmc; and (iii) Don. varies linearly with the surfactant concentration that produces maximum solubilization.  相似文献   

13.
In the system composed of the cationic surfactant TOMAC (10 mM), the nonionic (co)surfactant Rewopal HV5 (2 mM), and octanol (0.1% v/v) in isooctane, reversed micelles are formed upon contact with an aqueous phase containing 50 mM ethylene diamine. alpha-Amylase can be transferred from the aqueous phase into reversed micelles in the pH range 9.5 to 10.5 and re-extracted into a second aqueous phase of different composition. The size of the reversed micelles (as reflected in the water content of the organic phase) can be varied by changes in percentage of octanol, type of counterion in the aqueous phase, or in the number of ethoxylate head groups of the nonionic surfactant. An increase in size results in transfer at lower pH values. Experiments in which the charge density in the reversed micellar interface was changed by incorporation of charged derivatives of the nonionic surfactant, without influencing the water content, revealed that an increased charge density facilitated transfer, resulting in a broader transfer profile. Replacement of TOMAC by other quaternary ammonium surfactants differing in number and length of tails revealed that, of the 14 surfactants tested, only 2 gave appreciable amounts of transfer. The amount of transfer is related to the dynamics of phase separation of the surfactants: those giving a poor phase separation inactivate the enzyme. This inactivation is caused by electrostatic interactions between the charged surfactant head groups and charged groups on the enzyme. Electrostatic interactions are the first step of transfer, and can result in either incorporation in a reversed micelle, or, if reversed micelle formation is slow, in enzyme inactivation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
Useful materials can be made from cycloamylose (CA) and the functional properties of CA could be improved by complexation with surfactants. Isothermal titration calorimetry (ITC) was used to investigate interactions between CA and surfactants in buffered solutions. Three surfactants with C12 non-polar tail groups and charged [anionic: sodium dodecyl sulfate (SDS); cationic: dodecyl trimethylammonium bromide (DTAB)] or non-charged headgroups [non-ionic: polyoxyethylene 23 lauryl ether (Brij35)] were used in this study. The effects of temperature, pH, and salt concentration were also studied. All three surfactants bound to CA; however, Brij35 binding to CA was negligible. Enthalpy changes associated with binding of surfactants to CA were exothermic except for interactions measured at 50 °C. There was no effect of pH on surfactant demicellization or CA binding. Salt concentration affected surfactant demicellization, but the amount of SDS bound to CA at saturation was unaffected by salt. When the titration curves obtained for CA with SDS and DTAB were fitted, it could be analyzed using a model based on a single set of identical sites.  相似文献   

15.
Equilibrium measurements of the binding of central nervous system myelin basic protein to sodium dodecyl sulphate, sodium deoxycholate and lysophosphatidylcholine have been obtained by gel permeation chromatography and dialysis. This protein associates with large amounts of each of these surfactants: the apparent saturation weight ratios (surfactant/protein) being 3.58 +/- 0.12 and 2.30 +/- 0.15 for dodecyl sulphate at ionic strengths 0.30 and 0.10, respectively 1.34 +/- 0.10 for deoxycholate (at 0.12 ionic strength) and 4.0 +/- 0.5 for lysophosphatidylcholine. Binding to the ionic surfactants increases markedly close to their critical micelle concentrations. Sedimentation analysis shows that at 0.30 ionic strenght in excess dodecyl sulphate the protein is monomeric. It becomes dimeric when the binding ratio falls below 1 at a free detergent concentration of approximately 0.25 mM: below this concentration much of the protein and deterent forms an insoluble complex. The amount of dodecyl sulphate bound at high concentrations and at both above-mentioned ionic strengths corresponds closely to that expected for interaction of a single poly-peptide with two micelles. Variability of deoxycholate micelle size on interaction with other molecules precludes a similar analysis for this surfactant. Association was observed only with single micelles of lysophosphatidylcholine. The results provide strong evidence for dual lipid-binding sites on basic protein and indicate that lipid bilayer cross-linking by this protein may be effected by single molecules.  相似文献   

16.
The study of fluorescence quenching of the fluorophores allows the localization of the alkaloids (harmane and harmine) in the micelles (SDS, CTAB, Brij-35) to be established. In aqueous micellar solutions (SDS and Brij-35) at pH 13.0, emission corresponding to the neutral or zwitterionic forms can be observed. In the presence of CTAB (pH = 13.0) it was possible to observe the emission of anionic form. These species are not present in buffered aqueous solutions at these pH values. Bromide ion was added to the different surfactant solutions and the quenching effect was studied according to the Stern-Volmer equation. In the presence of SDS the quenching effect is considerably reduced compared to the aqueous solutions without surfactants, while for Brij-35 micelles were similar to those observed in homogeneous aqueous solution. For CTAB micelles a notable fluorescence quenching was observed for the different pH values studied. The fluorescence quenching studies show that the neutral species are associated inside the micelles, instead of the ionic species (cationic, zwitterionic or anionic) remaining on the surface of the micelles. The anionic surface of SDS micelles prevents the quenching effect by anionic quenchers for both neutral and charged species.  相似文献   

17.
Surface tensiometry and vibrational sum-frequency spectroscopy were used to examine the structure and organization in phospholipid monolayers at the aqueous/vapor interface in the absence and in the presence of simple, charged surfactants. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was the phospholipid employed in these studies and surfactants included sodium dodecyl sulfate (SDS) and dodecyl trimethyl ammonium bromide (DTAB). DPPC spontaneously spreads on a pure water (pH = 5.5) surface to form monolayers as evidenced by an equilibrium spreading pressure (ESP) of 7.9 ± 2.3 mN/m and a clearly resolved vibrational spectrum. Low concentrations of surfactants inhibit the spreading of DPPC and result in significantly lower ESP values. Anionic and cationic surfactants at higher concentrations have opposite effects on monolayer organization; SDS creates well-organized monolayers while DTAB leads to poor organization of lipid molecules. Surface-specific vibrational spectra showed that high concentrations of charged surfactants (≥ 100 µM) lead to accumulation of net surface charges as evidenced by destructive and constructive interferences. Selectively deuterating surfactants results in changes in vibrational band intensities and phases enabling assignment of relative orientations of equivalent functional groups belonging to the lipid and surfactant.  相似文献   

18.
Abstract: The pH optimum of native adrenal medulla tyrosine hydroxylase activity is shifted from 5.8 to 6.4 by polyanions (heparin, dextran sulphate), salts (NaCl, Na2SO4) and the anionic buffer 2-( N -morpholino)ethanesulphonic acid (MES). Simultaneously, the activity at the optimal pH is increased. Kinetic studies have shown that this activation is associated with a decrease of the apparent K m of the enzyme for the cofactor 6,7-dimethyltetrahydropterin (DMPH4) and an increase in the V max for tyrosine and DMPH4. The K m for the tyrosine remained unchanged. These data have been interpreted in terms of the polyelectrolyte theory. The adsorption of tyrosine hydroxylase on various affinity gels containing heparin, dextran sulphate or unsulphated polymer dextran as ligands indicate that the activation of the enzyme is mediated by electrostatic interactions with the anionic species. The site of electrostatic interaction possesses some specificity since the binding constants are higher for heparin or dextran sulphate than for NaCl or MES buffer. Moreover, 3-( N -morpholino)propanesulphonic acid (MOPS) a slightly structurally different buffer inhibits the enzyme activity whereas N -(2-acetamido)-2-amino-ethanesulphonic acid (ACES) has no effect. A limited proteolytic digestion which preserves the enzymatic activity, destroys the effects of the anions. The isoelectric point and the molecular parameters of tyrosine hydroxylase are markedly altered after limited digestion. It is therefore suggested that the interaction between the hydroxylase and anionic compounds occurs on a part of the protein which is different from the active site and which is lost by proteolysis. This portion of the protein might be involved in regulation of native tyrosine hydroxylase.  相似文献   

19.
Chitosan, a cationic polysaccharide, has been found to improve the surface activity of lung surfactant extracts in the presence of various inhibitors. It has been proposed that chitosan binds to anionic lipids (e.g. phosphatidyl glycerols) in lung surfactants, producing stable lipid films at the air-water interface. This binding also reverses the net charge of the surfactant aggregates, from negative to positive. Unfortunately, positively charged aggregates may adsorb or interact with the negatively charged epithelial tissue, leading to poor surfactant performance. To address this issue an anionic polysaccharide, dextran sulfate (dexS), was used as a secondary coating to reverse the charge of chitosan-lung surfactant extracts without affecting the surface activity of the preparation. The dynamic surface tension and zeta potential of bovine lipid extract surfactant (BLES) containing chitosan chloride (chiCl) and dexS were evaluated as a function of dexS concentration. These studies were conducted in the absence and presence of sodium bicarbonate buffer, and in the absence and presence of bovine serum used as model inhibitor. It was determined that using an appropriate concentration of dexS, especially at physiological pH, it is possible to restore the negative charge of the surfactant aggregates, and retain their surface activity, even in the presence of bovine serum. High concentrations of dexS affect the binding of chiCl to BLES, and the surface activity of the preparation.  相似文献   

20.
The striking change in the circular dichroism (CD) of bradykinin (BK) occasioned by its interaction with sodium dodecyl sulfate (SDS) is evidently due in large part to a change in the conformation of the C-terminal tetrapeptide moiety of the hormone. The full change in CD is induced by the binding of two molecules of monomeric SDS per peptide molecule, the complex being aggregated. Formation of the 1:2 BK-SDS complex apparently proceeds via intermediates of stoichiometry 1:1 and 2:1. The cooperative nature of the interaction is attributed to the SDS-promoted aggregation of BK. Electrostatic interactions with the Arg residues appear important for the binding reaction per se. CD reveals that BK also interacts with acidic lipids which bear a net electrical charge (e.g., cerebroside sulfate and phosphatidyl inositol) but not with lipids bearing no net charge (e.g., cerebroside and phosphatidyl choline). The interactions are with particular mixed micelles of the lipid and the nonionic surfactant used for their solubilization, micellar size and structure being examined by surface tensiometry and electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号